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Abstract

We consider abstract exchange mechanisms wherein individuals submit “di-
versified” offers in m commodities, which are then redistributed to them.
Our first result is that if the mechanism satisfies certain natural conditions
embodying “fairness”and “convenience”then it admits unique prices, in the
sense of consistent exchange-rates across commodity pairs ij that equalize
the valuation of offers and returns for each individual.
We next define certain integers τij, πij and ki which represent the “time”

required to exchange i for j, the “diffi culty” in determining the exchange
ratio, and the “dimension”of the offer space in i; we refer to these as time-
, price- and message- complexity of the mechanism. Our second result is
that there are only a finite number of minimally complex mechanisms, which
moreover correspond to certain directed graphs G in a precise sense. The
edges of G can be regarded as markets for commodity pairs, and prices play
a stronger role in that the return to a trader depends only on his own offer
and the prices.
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Finally we consider “strongly”minimal mechanisms, with smallest “worst
case”complexities τ = max τij and π = maxπij. Our third main result is that
form > 3 commodities that there are precisely three such mechanisms, which
correspond to the star, cycle, and complete graphs, and have complexities
(π, τ) = (4, 2) , (2,m− 1) , (m2 −m, 1) respectively. Unlike the other two
mechanisms, the star mechanism has a distinguished commodity —the money
— that serves as the sole medium of exchange. As m → ∞ it is the only
mechanism with bounded (π, τ).
JEL Classification: C70, C72, C79, D44, D63, D82.
Keywords: exchange mechanism, minimal complexity, prices, markets,

money.

1 Introduction

The early history of human settlement is intimately connected with economic
specialization and the concomitant need to exchange commodities, which led
to the formation of urban communities where such trades might be better
effected. These communities were in regular conflict with one another, with
the successful ones progressing from villages to cities to states. Many ancient
civilizations seemed to have followed a similar evolutionary path and to have
further developed the notion of “money”—a commodity that served as a
medium of exchange. The Sumerians used barley, silver, and gold at various
stages. Other societies have used cowrie shells, beads, or even large stone
disks. In modern times money mostly takes the form of paper, deemed
suffi cient to settle private and public debt by fiat of the government.
The central question inevitably arises: what are the imperatives that

lead to the emergence of a money in an exchange economy? This has been
explored in the literature in terms of overcoming frictions in trade, such
as the diffi culty of “a double coincidence of wants”1 or transactions costs
(see section 1.3 for a survey). These analyses have been carried out in the
framework of a group of sophisticated individuals who maximize utilities in
competitive interaction with one another in an economic equilibrium.
Our aim is to show that there is a more elementary rationale for the

emergence of money, based on considerations that arise prior to the onset
of utilitarianism. To the extent that different urban communtites may have

1In pairwise encounters between individuals, a trader must have the rare good fortune
to meet another who not only has what he wants, but also wants what he has.
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developed different mechanisms of exchanging goods, one can fruitfully apply
the idea of competition to the “exchange mechanisms” themselves. Thus
one may ask, what attributes of a mechanism might provide it a competitive
advantage over others? In this paper we focus on two such attributes, namely
“fairness”and “convenience”or “ease of use”.
We start with a mechanism stripped down to its bare minimum, leav-

ing only what is necessary to enable trade in a fixed finite set {1, . . . ,m}
of commodities. The mechanism takes in offers, possibly diversified, of each
commodity from an arbitrary set of individuals and then redistributes back to
them everything that it has received. We impose five conditions on the mech-
anism that we term anonymity, non-dissipation, aggregation, invariance, and
flexibility, which reflect the twin attributes of fairness and convenience. Al-
though there are infinitely many mechanisms satisfying these conditions, our
first result is that every such mechanism admits unique prices, in the sense of
consistent exchange-rates across commodity pairs that equalize the valuation
of offers and returns for each individual.
We next define some natural notions of “complexity” for a mechanism

and, in keeping with the idea of convenience, we study mechanisms with
minimal complexity. Our second result is that there are only a finite number
of minimal mechanisms, and these moreover have a very special graphical
structure. Markets emerge for various commodities, and prices mediate trade
across these markets in a strong sense: the return to a trader depends only
on his own offer and the prices.
Finally we introduce certain refined notions of complexity for this fi-

nite class and study the corresponding minimal mechanisms, which we term
strongly minimal. It turns out that there are only three strongly minimal
mechanisms, up to a relabeling of commodities. In one of these, a single
commodity emerges endogenously as money and mediates trade among de-
centralized markets for the other commodities. Moreover, with a moderate
increase in the number of commodities, the money mechanism quickly super-
sedes the other two in a very precise sense.
Note that our analyis addresses the question: “Why money?”It is totally

silent on: “What money?”There is considerable discussion in the classical
literature (see,e,g., [17], [19], [20], [21], [27], [37]) regarding the different
criteria for the choice of a suitable “commodity money”such as its portability,
verifiability, divisibility and durability; or, alternatively, the backing of the
state requisite to sustain “fiat money”. (For a recent survey on both kinds
of money, see [42] and [43]). Our analysis is quite compatible with this
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literature2, being only at pains to point out the urgency of appointing some
money. In the absence of money, as most tellingly recounted by Jevons [17],
matters may get really out of hand!

“Some years since, Mademoiselle Zélie, a singer of the Théâtre Lyrique at Paris,
made a professional tour round the world, and gave a concert in the Society Islands.
In exchange for an air from Norma and a few other songs, she was to receive a
third part of the receipts. When counted, her share was found to consist of three
pigs, twenty-three turkeys, forty-four chickens, five thousand cocoa-nuts, besides
considerable quantities of bananas, lemons, and oranges. At the Halle in Paris, as
the prima donna remarks in her lively letter, printed by M. Wolowski, this amount
of live stock and vegetables might have brought four thousand francs, which would
have been good remuneration for five songs. In Society Islands, however, pieces of
money were very scarce; and as Mademoiselle could not consume any considerable
portion of the receipts herself, it became necessary in the mean time to feed the
pigs and poultry with the fruit.”

The discussion we shall present will be somewhat dry and mathematical,
and certainly lacking in the liveliness of Mademoiselle Zélie’s recollections,
but we hope that it may serve as a useful supplement. For the convenience
of the reader we provide an outline of our model and results in somewhat
greater detail in the next two subsections, postponing the formal discussion
till section 2.

1.1 Outline of the Model

Our analysis is carried out in the spirit3 of mechanism-design, with the aim
– as was said – of rendering trade as fair and as convenient as possible.

2Our model can equally accomodate fiat money or commodity money, depending on
how preferences are introduced. Indeed, all we suppose is that the m items being traded
are distinguishable from one another. In particular, offers could just be quotes (think of
e-commerce!), instead of actual shipment of goods; in which case the mechanism is quoting
back what each individual is entitled to receive. Our model leaves the door wide open as
to whether the quoted promises of delivery and the entitlements due are to be netted, or
not; and what penalties need be levied for default in deliveries.

3However we are not trying to implement, via dominant or Nash strategies, any desired
“solution”on a given domain of indviduals’characteristics, as is common in much of the
mechanism-design literature. In our framework, there are no such characteristics to begin
with; nor therefore any solution emanating from them. We use the word “mechanism”
(see section 1.1.3.1 of [26]) “with its “plain english”meaning instead of the meaning it has
been given in technical parlance.”And its express purpose is to enable everyman to trade,
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To enable individuals to play a more influential role in the drama of trade
beyond just their offer of commodities, we introduce a common language
in which they may communicate with the mechanism M . No structure is
imposed on the language except that it be of finite size. There is, for each
commodity i, an abstract finite4 set Ki = Ki(M), whose elements may be
thought of as costless messages that accompany offers in i. The elements of
Ki thus serve to diversify the offers in i, and that is their sole purpose. To
emphasize the abstract nature of the language, we use the agnostic name
i-index for an element of Ki. It is our purpose to see how far matters can
develop with the use of such a language. The reader may find the following
concrete analogy useful to keep our abstract scenario in mind. Imagine a set
Ki of “bins”made available for each commodity i. An “elementary action”
consists of depositing a quantity of i into one of the bins in Ki. Based upon
the entire conglomeration of elementary actions, the mechanism M assigns
a return vector in Rm+ to every such action, and in the process sends back all
the commodities it has received, emptying out the bins. An individual is, of
course, free to take as many actions as he wants and add up the returns that
the mechanism sends back for each of his actions.
Fixing a mechanismM , the overall offer of commodities by an individual

may be represented, for expositional convenience, by a vector in5 RK+ , where
K = K1 q · · · q Km denotes the disjoint union of the Ki. (It will shortly
become evident, in view of the aggregation condition we impose below onM ,
that this is tantamount to allowing the individual to take any finite number
of “elementary actions” that were referred to earlier.) The mechanism, as
was said, then redistributes the offers made by all the n individuals in the
population, sending back to each a return vector in Rm+ , and conserving
commodities in the process. The collection of maps from n-offers to n-returns
(one map for each n) constitutes6 the mechanism M .
Our five conditions on mechanisms are as follows.

with the simple expedient of offering commodities and without having to account for his
precise motivation or even bothering to pretend that he has one.

4As we vary M the cardinality of K1, . . . ,Km ranges over all m-tuples of positive
integers, thus there is no a priori upper bound on the size of the language.

5For any finite set X, we denote by AX the set of maps from X to A. Thus RX is
the Euclidean space whose axes are indexed by the elements of X; and RX+ and RX++
are its non-negative and strictly positive orthants. When X = {1, . . . ,m} is the set of
commodities, we write Rm etc. for brevity (since commodities are fixed throughout).

6When there is a continuum of traders, our analysis goes through mutatis mutandis
after making the obvious changes (see section 10).
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The first condition, anonymity, stipulates that the mechanism be blind
to all characteristics of a trader other than his offer. In other words, any two
traders who send in the same offer are assigned the same returns.
The second condition, aggregation, is says that if a trader pretends to be

two different persons by splitting his offer, others’returns are unaffected.
If either of these conditions were violated, trade would become a cumber-

some affair: each individual would need to keep track of the full distribution
of offers across the entire population, and then figure out how to diversify his
own offers in response. Thus these conditions contribute to convenience in
trade. They also embody fairness, allowing free entry to any number of par-
ticipants in a non-discriminatory fashion, and making the mechanism more
“inclusive”.
It is an immediate consequence of anonymity and aggregation that the

return to any individual is a function only of his own offer a ∈ RK+ and
the aggregate b ∈ RK++ of all offers7; moreover this function r(a, b) is the
same for all traders. (In light of this fact, we shall call the aggregate vector
b the state of the mechanism.). We define the net trade function to be
ν(a, b) = r(a, b) − a, where a ∈ Rm+ is the vector of commodities “used up”
in making the offer a ∈ RK+ .
The third condition is invariance. Its main content is that themaps which

comprise M are invariant under a change of units in which commodities are
measured. This makes the mechanism much simpler to operate in: one does
not need to keep track of seven pounds or seven kilograms or seven tons, just
the numeral 7 will do.
The fourth condition is non-dissipation and says that no trader’s return

can be less commodity-wise than his offer, i.e., if ν(a, b) 6= 0, then at least
one component of ν(a, b) must be positive. Such unfortunate traders would
tend to abandon the mechanism.
To state our final condition we consider the perspective of a binary ij-

trader8, who wishes to interact with the mechanism to exchange a single
commodity i for some other commodity j. Note that if a is an offer of i in
an index h ∈ Ki, the return r (a, b) will in general be a commodity bundle,
whose composition may depend on the state b. If r (a, b) consists exclusively

7Throughout we shall assume that on aggregate all indices are active, i.e., b is a strictly
positive vector. (It will suffi ce, for our purposes, to characterize the behavior of the
mechanisms on this restricted interior domain.)

8Binary trades will shortly be seen to form an iterative basis for all trade.
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of commodity j for all states b and all9 h-offers a, we will say that h is a “pure”
ij-index or an ij-market. In the absence of such markets, an ij-trader may
be forced to accept commodity j bundled with other commodities.
The fifth condition we impose on the mechanism is flexibility. It requires

that there are “enough”markets to enable individuals to “unbundle” their
returns. More precisely, we require that if r (a, b) has a positive j-component
for some market state b and some offer a solely in i, then the mechanism has
an ij-market.

1.2 The Key Results

We shall identify mechanisms, which are of “minimal complexity”amongst
those that satisfy the five conditions above. Two relevant notions of com-
plexity will be developed from the standpoint of binary traders
A natural concern of such a trader is: what is the minimum number of

time periods τij (M) needed to convert i to j? (The precise definitions of
“conversion”and τij (M) are given in section 3.1.) We say that a mechanism
is connected if τij (M) < ∞ for all i 6= j, and we write M = M(m) for the
class of connected mechanisms satisfying the five conditions.
Let Rm++/ ∼ be the set of rays10 in Rm++. A price function for a mechanism

is a map p from RK++ to Rm++/ ∼ satisfying value conservation: p(b) ·ν(a, b) =
0 for every a ≤ b. In other words, prices p(b) are determined by the state b
of the mechanism; and the value – under the prevailing prices – of each
individual’s offer is equal to that of his returns.
We can now state our first result.

Every mechanism of M admits a unique price function.

On account of value conservation, it is evident that binary trades form
an iterative basis of all trade for mechanisms in M, reinforcing our focus
on them. Note that value conservation is perforce true on the aggregate
since commodities are neither created nor destroyed by the mechanism, only
redistributed. Thus what the result essentially shows is that the mechanism
does not assign “profitable”trades to some at the expense of others.

9By invariance it is enough to require that for each b there exist some such h-offer a.
10A ray p represents a price vector up to overall multiplication by a positive scalar;

the ratios pi/pj represent well-defined consistent exchange rates across all pairs ij of
commodities.
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The other major concern of our binary trader is also clear: how much
of commodity j can he get per unit of i? It follows from our first result
that he can calculate this in terms of his own offer of i and the state of the
mechanism which determines the exchange rate11 pi/pj. Define πij(M) to be
cardinality of the minimal set of components of the state of the mechanism
required to compute the function pi/pj; equivalently the minimal set of bins
that he (or, the mechanism) needs to look into in order to calculate this rate.
(For the precise definition, see section 3.3.) The arrays of integers τij (M)
and πij(M), as we vary over all distinct pairs ij, represent respectively the
time complexity and price complexity12 of the mechanism. To these arrays
we add, by way of a subsidiary consideration, the sizes ki(M) of Ki(M) for
1 ≤ i ≤ m which measure message complexity.
Given two mechanisms M and M ′ inM, we say that M is no more com-

plex than M ′ and write M �M ′ if the time, price and message complexities
of M are no more – component by component – than the corresponding
complexities ofM ′. (See section 4.3 for a formal definition.) LetM∗ = M∗(m)
denote the set of all minimal mechanisms in M, i.e., mechanisms that are
minimal with repect to the pre-order � onM.
For any directed, connected graph G with vertex set {1, . . . ,m} , one can

define a mechanism MG in M such that Ki is the set of outgoing edges at
vertex i.(see [8] and section (4.2)) Such “G-mechanisms”have very special
structure. All the indices are pure, i.e. each edge of G is a market; further-
more, it turns out that prices mediate trade across the markets of MG (see
equation (3)) in the sense mentioned earlier: the return to a trader depends
only on his own offer and the market prices. Thus prices play the full-fledged
role of a “decoupling device”in any G-mechanism.
Denote byMg = Mg(m) the finite set of all G-mechanisms inM.We can

state our second result.

M∗ is a subset of Mg; in particular, M∗ is a finite set.

Though the mechanisms in M∗ are finite in number, they could be nu-

11If there is a continuum of traders, his own action has no effect on the exchange rate
and so he can compute the conversion easily. Otherwise he needs to track how his offer
alters the state of the market, and thereby the exchange rate. This complication may
be ignored, to a first order of approximation, if there are suffi ciently many traders in the
population.
12One could equally have used the term “informational complexity” or – with more

accuracy but less panache – “price-informational complexity.”
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merous. So we introduce a finer complexity distinction on M∗. Let τ (M)
and π(M) denote the maximum of the numbers τij (M) and πij(M). These
capture, respectively, time complexity and price complexity in the worst-
case scenario. For M and M ′ in M∗, we write M �W M ′, if π(M) ≤ π(M ′)
and τ(M) ≤ τ(M ′). We will refer to �W -minimal mechanisms in M∗(m) as
strongly minimal and denote byM∗∗ = M∗∗(m) the set of such mechanisms.
To state our next result, we introduce three special graphs: the star graph

with edges im,mi for all i < m, the cycle graph with edges 12, 23, ...,m1,
and the complete graph with edges ij, all i 6= j.

If m > 3 then, up to relabelling of commodities, M∗∗(m) consists of
precisely the three special mechanisms; their complexities as follows:

Star Cycle Complete
π(M) 4 2 m(m− 1)
τ(M) 2 m− 1 1

The star mechanism thus either outright dominates any non-star mecha-
nism component-wise (being strictly better in some component, and no worse
in the other); or else, it loses by a slight margin in some component, but wins
by a huge margin in the other component (the margin of victory going to
infinity with m). An immediate upshot is that if we take any weighted sum
Aπ(M)+Bτ(M) as a proxy for total complexity, where A andB are arbitrary
positive constants, then the star mechanism will be the unique minimizer of
total complexity in M(m) for suffi ciently large m.

1.3 Related Literature

The emergence of money and its role in the exchange of commodities has
been a matter of considerable discussion in economics. We present some
references that are only indicative, and far from exhaustive. (For a more
comprehensive survey, see [37], [42], [43].)
Jevons [17] emphasized four distinct functions of money, which were sub-

sequently popularized as follows in a couplet by Milnes [28]:

“Money’s a matter of functions four,
A Medium, a Measure, a Standard, a Store”.
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While there may be debate on details, the overall categorization of Jevons
has survived, even into modern textbooks on macroeconomics, although
many authors (see, e.g., [1], [25]) now tend to subsume one of the four func-
tions (the “standard”) under the other three. However, as Jevons himself
pointed out, the “medium of exchange” function provides the logical foun-
dation upon which the others stand (Chapter 3 of [17], italics ours):
“Being accustomed to exchange things frequently for sums of money, peo-

ple learn the value of other articles in terms of money”, with the upshot that
that money becomes the unit of account, or “measure of value”, for all trans-
actions. In the same vein, referring to the units for deferred payments when
credit comes into play, Jevons notes that “it will, of course, be desirable
to select as the standard of value that which appears likely to continue to
exchange for many other commodities.”Finally he observes that to have a
“store of value”it is requisite that whatever is put into storage should be us-
able, possibly upon liquidation, as a medium of exchange when it is retrieved;
and hence “the current money of a country is perhaps more likely to fulfil
these conditions than anything else, although diamonds and other precious
stones, and articles of exceptional beauty and rarity, might occasionally be
employed”.
Several search-theoretic models, involving random bilateral meetings be-

tween long-lived agents, have been developed following Jevons [17] (see, e.g.,
[2], [16], [18], [23], [24], [22], [29], [45] and the references therein). These
models turn on utility-maximizing behavior and beliefs of the agents in Nash
equilibrium, and shed light on which commodities are likely to get adopted as
money. A parallel, equally distinctive, strand of literature builds on partial
or general equilibrium models with other kinds of frictions in trade, such as
limited trading opportunities in each period, or transactions costs (see, e.g.,
[11], [12], [13], [14], [15], [30], [31], [43], [44], [46]). In each of these models,
a specific trading mechanism is exogenously fixed, and the focus is on activ-
ity within the mechanism that is induced by equilibrium, based again upon
optimal behavior of utilitarian individuals.
Our approach complements this literature in two salient ways, and brings

to light a new rationale for money that is different from those propounded
earlier, but not inimical to them, in that the door is left fully open to incor-
porate their concerns within our framework. First, as we have emphasized,
our focus is purely on mechanisms of trade with no regard to the character-
istics of the individuals such as their endowments, production technologies,
preferences or beliefs. Second, no specific trading mechanism is specified ex-
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ante by us. We start with a welter of mechanisms and cut them down by
complexity considerations, ultimately ending up with the star mechanism.
The model we present builds squarely upon [8], which provided an ax-

iomatic characterization of the finite set of "G-mechanisms" (see section 4.2),
bridging the gap between the Shapley-Shubik model of decentralized “trading
posts”(see [38], [39], [40]) and the Shapley model of centralized “windows”
(see [36]). Various strategic market games, based upon trading posts (the
star mechanism), have been analysed, with commodity or fiat money in [4],
[32], [33], [34], [38], [39], [40], [41]; many of these papers also discuss the con-
vergence of Nash equilibria (NE) to Walras equilibria (WE) under replication
of traders. For a continuum-of-traders version of these models, with details
on explicit properties of the commodity money (its distribution and desirabil-
ity) or of fiat money (its availability and the harshness of default penalties),
which guarantee equivalence (or near-equivalence) of NE and WE, see [7],
[9], [10]; and, for an axiomatic approach to the equivalence phenomenon, see
[5].
Strategic market games differ in a fundamental sense from the Walras

equilibrium model, despite the equivalence of NE and WE. In the WE frame-
work, agents always optimize generating supply and demand functions, but
markets do not clear except at equilibrium. We are left in the dark as to what
happens outside of equilibrium. In sharp contrast markets always clear, pro-
ducing prices and trades based on agents’strategies, in the market games;
but agents do not optimize except at equilibrium. The very formulation of a
game demands that the “game form”, i.e., the map from strategies to out-
comes, must be defined prior to the introduction of agents’preferences on
outcomes; thus disentangling the physics of trade from its psychology. Our
mechanisms are firmly in this genre, and indeed form the bases upon which
many market-games are built. To be precise: game forms arise from our
mechanisms by introducing private endowments, along with the constraints
that these impose on individuals’ offers; and market games then arise by
further introducing preferences.
In conclusion, let us reiterate that our purpose here is to deduce the ex-

istence of prices, markets and money in the simplest possible mechanism.
To this end we start with the minimalistic postulate that quantities of com-
modities are offered in trade; adding on only a rudimentary syntax whose
sole intent is to enable traders to diversify their offers. Once we have prices,
more sophisticated strategies can come into being, wherein agents use prices
alongside quantities in a semantic sense, in order to make contingent state-
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ments and thereby protect themselves against vagaries of the market. For
extensions in this direction of the Shapley-Shubik trading-posts game form,
see [6]; and for the much more complex extension of the Shapley-windows
game form, see [26]. It may well be that a unified abstract approach ex-
ists, which encompasses these two models, and more, and does within the
Bertrandian setting what we have done in the Cournotian, but that is a topic
for future exploration.

2 The Formal Model

2.1 Exchange Mechanisms

We now present the model and the five conditions in a more formal manner.
The treatment is the same as in [8], except that we impose the conditions of
non-dissipation and flexibility in lieu of “Price Mediation”(see section 4.2)
that was used in [8], obtaining a bigger class of mechanisms here.
A exchange mechanism M allows individuals in {1, . . . , n} to trade by

means of quantity offers in each commodity in the set {1, . . . ,m}. Here m is
fixed and n = 2, 3,. . . can be arbitrary. As discussed in the introduction, we
assume that for each commodity i, there is a finite set Ki of i-indices that
can accompany offers in i. Thus the offer in i can be an arbitrary vector in
RKi

+ and we define

K = K1 q · · · qKm, S = RK+ , S+ = RK++;

S (resp. S+) is the space of offers (resp., strictly positive offers). Also define

a = (a1, . . . , am)

where ai ∈ R+ is the sum of the components of ai ∈ RKi
+ , and denotes the

total amount of commodity i involved in sending offer ai. Let Sn be the n-fold
Cartesian product of S with itself, and (with a = (a1, . . . ,an)) let

S(n) =

{
a ∈ Sn :

n∑
α=1

aα ∈ S+

}

denote the n-tuples of offers that are positive on aggregate. Also let C = Rm+
denote the commodity space; and Cn its n-fold product.
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An exchange mechanism M , on a given set of m commodities, is a collec-
tion of maps (one for each positive integer n) from S(n) to Cn such that, if
a ∈ S(n) leads to returns r ∈ Cn, then we have (reflecting the conservation
of commodities) :

n∑
α=1

aα =
n∑

α=1

rα

2.1.1 Conditions on the Mechanisms

In this section give a precise statement of each of the five conditions on a
mechanism M that were alluded to in section 1.1.
The first condition is that the mechanism must be blind to all other

characteristics of a trader except for his offer:

Condition 1 (Anonymity) Suppose a ∈ S(n) and aα = aβ. Let r denote
the returns that accrue from a.Then rα = rβ.

The second condition is that if any trader pretends to be two different
persons by splitting his offer, the returns to the others is unaffected. It is
easier (and suffi cient !) to state this for the “last”trader.

Condition 2 (Aggregation) Suppose a ∈ S(n) and b ∈ S(n+ 1) are such
that aα = bα for α < n and an = bn + bn+1 . Let r,s denote the returns that
accrue from a,b respectively. Then rα = sα for α < n.

As remarked before, Anonymity and Aggregation immediately imply that,
regardless of the size n of the population, the return to any trader may be
written r(a, b),where a ∈ S is his own offer and b ∈ S+ is the aggregate of all
offers. Recall that ν(a, b) = r(a, b)− a denotes his net trade.
For the remaining conditions, it will be useful to introduce some more

notation. Let L ⊂ P and let w ∈ RP .

1. We write λ ∗L w for the vector obtained by scaling the L-components
of w by the scalar λ

2. We say that a non-zero vector w is an L -vector if its non-L components
are 0; equivalently if λ ∗L w = λw

3. By an ı̄j-vector we mean an {i, j}-vector that has a negative i-component,
a positive j-component.
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In what follows, we will apply this notation and speak of L-offers and
L-returns. Also, we will consistently use a for an individual’s offer and b
for the positive aggregate offer; so, when we refer to the pair a, b it will be
implicit that a ∈ S, b ∈ S+ (and also, for the moment, that a ≤ b; though
we shall drop this inequality soon, in view of Proposition 6 below).

Condition 3 (Invariance) ν(λ ∗Ki
a, λ ∗Ki

b) = λ ∗i ν(a, b) for all a, b and
positive scalars λ.

The fourth condition is that no trader can get strictly less than his offer.

Condition 4 (Non-dissipation) If ν(a, b) 6= 0, then νi(a, b) > 0 for some
component i.

Define h ∈ Ki to be an ij-index (resp., a pure ij-index or an ij-market) if
there exists an h-vector a ∈ S such that rj(a, b) > 0 for some b (resp., r(a, b)
is a j-vector for all b.) Our fifth condition is as follows.

Condition 5 (Flexibility) If M has an ij-index then it has an ij-market.

As was said, flexibility assures us of the presence of enough ij-markets to
enable traders to “unbundle”returns.
A mechanism is determined uniquely by its net trade function ν(a, b) :=

r(a, b) − a, which, although initially defined for a ≤ b admits a natural
extension as follows.

Proposition 6 The net trade ν admits a unique extension to S × S+ satis-
fying

ν (λa, b) = λν (a, b) , ν (a, λb) = ν (a, b) for all positive λ

Proof. See Lemma 1 of [8]. Although [8] considers a more restrictive
class of mechanisms, we note that the proof of Lemma 1 there only uses the
conditions of anonymity, aggregation, and invariance.
In view of the above result, we drop the restriction a ≤ b when considering

ν (a, b).
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2.1.2 Further Comments on the Conditions

Aggregation does not imply that if two individuals were to merge, they would
be unable to enhance their “oligopolistic power” For despite the aggrega-
tion condition, the merged individuals are free to coordinate their actions
by jointly picking a point in the Cartesian product of their action spaces.
Indeed all the mechanisms we obtain display this “oligopolistic effect”, even
though they also satisfy aggregation.
It is worthy of note that the cuneiform tablets of ancient Sumeria, which

are some of the earliest examples of written language and arithmetic, are in
large part devoted to records and receipts pertaining to economic transac-
tions. Invariance postulates the "numericity" property of the maps r(a, b)
(or, ν(a, b)) making them independent of the underlying choice of units, and
this goes to the very heart of the quantitative measurement of commodities.
In its absence, one would need to figure out how the maps are altered when
units change, as they are prone to do, especially in a dynamic economy. This
would make the mechanism cumbersome to use.
Non-dissipation (in conjunction with aggregation, anonymity, and the

conservation of commodities) immediately implies no-arbitrage: for any a, b
neither ν(a, b) � 0 nor ν(a, b) � 0. To see this, note that in view of Proposi-
tion 6 we need consider only the case a ≤ b and rule out ν(a, b) � 0. Denote
c = b − a. Then ν(a, b) + ν(c, b) = ν(a + c, b) = ν(b, b) = 0, where the first
equality follows from aggregation, and the last from conservation of commodi-
ties. But then ν(a, b) � 0 implies ν(c, b) � 0, contradicting non-dissipation.
Flexibility guarantees the existence of certain ij-markets. However the

mechanism may well admit complex trading opportunities, such as swaps of
commodity bundles, that coexist with the ij-markets; the former comprising,
so to speak, a tangled web around the latter. It is our complexity criteria
below which eliminate the web and allow only the markets to survive, see
Theorem 11.

3 Complexity

We turn now to the notion of the complexity of such a mechanism. As dis-
cussed in the introduction, the idea is to define complexity from the stand-
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point of a “binary” ij-trader13 who interfaces with M in order to exchange
commodity i for commodity j. We focus on two basic concerns for such a
trader: first, how long will it take him to effect the exchange; and, second,
how diffi cult will it be for him to figure out the terms of exchange? The first
concern leads to the notion of “time complexity”, and the second to that of
“price complexity”.

3.1 Time Complexity

Definition 7 Given two commodity bundles v, w ∈ C we will say that v can
be converted to w, and we write v → w if there exist a, b such that

w = v + ν(a, b) and a ≤ v.

We write τ (v, w,M) for the smallest “time”t for which there is a sequence

v → v1 → · · · → vt−1 → w.

If v, w are restricted to being i- and j- vectors, then by invariance it
follows that the ij-time complexity τij (M) := τ (v, w,M) is independent of
the particular choice of v, w. We further define the (maximum) time com-
plexity τ(M) := maxi 6=j {τij(M)} and say that a mechanism M is connected
if τ(M) <∞.
We denote by M = M(m) the class of all connected mechanisms with

commodity set {1, . . . ,m} .

3.2 The Emergence of Prices

Recall that Rm++/ ∼ is the set of rays in Rm++, representing prices. It turns
out that prices emerge in connected mechanisms; and the values, under these
prices, of offers and returns are conserved for every trader.

Theorem 8 Let M be connected with associated net trade function ν. Then
there is a unique map p : RK++ → Rm++/ ∼ satisfying p(b) · ν(a, b) = 0.

13We focus on bilateral trades between pairs of commodities because they form an
iterative basis for all trade. This is so on account of prices (exchange rates) that will
shortly be shown to emerge and govern all trade.
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Even though p(b) is only defined up to an overall scalar multiple, for each
pair i, j we get a well-defined price ratio function

pij : S+ 7→ R++; pij(b) =
pi(b)

pj(b)

Recall the notion of an ı̄j-vector from section 2.1.1. Theorem 8 has the
following immediate consequence.

Corollary 9 Suppose ν(a, b) is an ı̄j-vector. Then νi(a,b)
νj(a,b)

= −pij(b).

3.3 Price Complexity

Note that a binary ij-trader is only interested in net trades ν(a, b) that are
ı̄j-vectors. By the previous corollary, the exchange ratio νi(a,b)

νj(a,b)
is independent

of the action a producing the ı̄j-trade, and depends only on pij(b). Therefore
such a trader is interested only in those components of b which “influence”
the function pij(b).
To make this notion precise, say that component i is influential for a

function f(x1, . . . , xl) if there are two inputs x, x′, differing only in the ith
place, such that f (x) 6= f (x′). Define the ij-price complexity πij(M) to
be the number of influential components of the function pij. Also define the
(maximum) price complexity by

π(M) := max {πij(M) : i 6= j}

4 The Emergence of Markets: G-Mechanisms

4.1 Directed Graphs

In this paper by a graph we mean a directed simple graph. Such a graph G
consists of a finite vertex set VG, togther with an edge set EG ⊆ VG × VG
that does not contain any loops, i.e., edges of the form ii. For simplicity we
shall often write i ∈ G, ij ∈ G in place of i ∈ VG, ij ∈ EG but there should
be no confusion.
By a path ii1i2 . . . ikj from i to j we mean a nonempty sequence of edges

in G of the form
ii1, i1i2, . . . , ik−1ik, ikj.
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If k = 0 then the path consists of the single edge ij, otherwise we insist that
the intermediate vertices i1, . . . , ik be distinct from each other and from the
endpoints i, j. However we do allow i = j, in which case the path is called
a cycle. We say that G is connected14 if for any two vertices i 6= j there is a
path from i to j.

4.2 G-mechanisms

Let G be a connected graph with vertex set {1, . . . ,m}. Following [8] one
may associate to G a mechanism MG ∈M(m) as follows. We let Ki be the
set of outgoing edges at vertex i, and regard v ∈ S as a matrix (vij) with
vij understood to be 0 if ij /∈ G. To define r (a, b) we need the following
elementary result (see, e.g. [8]).

Lemma 10 For b ∈ S+, there is a unique ray p = p(b) in Rm++/ ∼ satisfying∑
i
pibij =

∑
i
pjbji for all j. (1)

Now for (a, b) ∈ S × S+ we set p = p (b) as in (1) and define r (a, b) by

ri(a, b) = p−1
i

(∑
j
pjaji

)
for all i. (2)

We remark that the left side of (1) is the total value of all the goods “chasing”
good j, while the right side is the total value of good j on offer.
Mechanisms of the form MG will be called (connected) G-mechanisms,

and we write Mg = Mg(m) for the totality of such mechanisms. It is worth
noting that Mg is a finite set. Moreover, the formula (2) for the return
function of a G-mechanism immediately implies

p(b) = p(c) =⇒ r(a, b) = r(a, c) for all a ∈ S; b, c ∈ S+ (3)

In [8] this property was referred to as price mediation and, in conjunction
with other axioms, shown to characterize Mg.

14In [8], the term "irreducible" was used in place of "connected".
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4.3 Minimal Mechanisms

GivenM andM ′ inM with complexities τij, πij, ki and τ ′ij, π
′
ij, k

′
i respectively,

we say that M is no more complex than M ′ and write M �M ′ if for all i, j

τij ≤ τ ′ij, πij ≤ π′ij, ki ≤ k′i.

Clearly � is reflexive and transitive, and hence constitutes a pre-order onM.
We let M∗ = M∗(m) denote the set of �-minimal elements15.

Theorem 11 Minimal mechanisms are G-mechanisms: M∗ ⊂Mg.

5 The Emergence of Money

Let us, from now on, identify two mechanisms if one can be obtained from the
other by relabeling commodities. Then there are three mechanisms of special
interest to us inMg(m) called the star, cycle, and complete mechanisms; with
the following edge-sets:

G Star Cycle Complete
EG {mi, im : i < m} {12, 23, . . . ,m1} {ij : i 6= j}

Notice that the central vertexm of the graph underlying the star mechanism
plays the role of money, and is the sole medium of exchange.16

ConsiderM andM ′ inM∗. They might be incomparable in the pre-order
� . But we can make a finer distinction on M∗ in terms of the indices π
and τ , that were introduced earlier to capture complexity in the worst case
scenarios. To this end, we define a pre-order �W on M∗ as follows: M �W
M ′ if

τ(M) ≤ τ(M ′), π(M) ≤ π(M ′).

We will refer to �W -minimal mechanisms inM∗(m) as strongly minimal and
denote by M∗∗ = M∗∗(m) the set of such mechanisms. Our main result is

15Let � be a pre-order on X. We say x ∈ X is �-minimal if y � x implies x � y.
16This is reminiscent of “spontaneous symmetry breaking” in physics. The ex ante

symmetry between commodities, assumed in our model, is carried over to the cycle and
complete mechanisms. It breaks down only in the star mechanism, giving rise to money.
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Theorem 12 For17 m > 3 the only mechanisms in M∗∗(m) are the star,
cycle, and complete mechanisms with complexities as follows:

Star Cycle Complete
π(M) 4 2 m(m− 1)
τ(M) 2 m− 1 1

The array clearly exhibits the superiority of the star mechanism. As the
number of commodities m increases, the other two will beat star slightly in
one component, but will lose by a huge margin to star in the other component.

6 Proof of Theorem 8

We fix a mechanism M in M with net trade function ν (a, b). Consider the
set of pairs (i, j) for which there is at least one ij-market (pure ij-index) in
K, and fix a subset P ⊂ K which contains exactly one ij-index for each such
pair. Let SP ⊂ S denote the set of P -offers, and define the set of P -offers
“subordinate”to v as follows:

SP (v) = {a ∈ SP : a ≤ v}

Given a vector v ∈ S we write 〈v〉 for the class of vectors with the same sign
as v, thus w ∈ 〈v〉 if each component wi has the same sign (+,−, 0) as vi.

Lemma 13 Let v, w ∈ S then the following are equivalent.

1. There is an a ∈ SP (v) such that v + ν (a, b) ∈ 〈w〉 for some b ∈ S+

2. There is an a ∈ SP (v) such that v + ν (a, b) ∈ 〈w〉 for all b ∈ S+

3. For each u ∈ 〈v〉 there is an a ∈ SP (u) such that u+ ν (a, b) ∈ 〈w〉 for
all b ∈ S+

Proof. It is evident that (3) implies (2), and (2) implies (1). We now
show that (1) implies (3). Suppose v, a, b, w satisfy (1). Given u ∈ 〈v〉 and
b∗ ∈ S+, we need to find a∗ ∈ SP (u) such that u, a∗, b∗, w satisfy (3). Since u

17When m = 3, we get a fourth mechanism with complexities 4, 2 identical to the star
mechanism. And when m = 2, we must change 4 to 2 in the table (the three graphs
become identical with complexities 2, 2 for each).
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and v have the same signs there exist positive scalars λi such that ui = λivi
for all i. Define a∗ by (a∗)i = λiai, where (recall) ai is the vector obtained
from a by restricting to the Ki-components. Now we have

v + ν (a, b) = (v − a) + r (a, b)

u+ ν (a∗, b∗) = (u− a∗) + r (a∗, b∗)

By construction of a∗ we have (v − a)i = λi (u− a∗)i for all i, and hence
〈v − a〉 = 〈u− a∗〉. Also since a and a∗ are P -offers, by aggregation and
invariance we have 〈r (a, b)〉 = 〈r (a, b∗)〉 = 〈r (a∗, b∗)〉. We note that if x, y
are non-negative vectors then 〈x+ y〉 is uniquely determined by 〈x〉 and 〈y〉,
thus we get

〈u+ ν (a∗, b∗)〉 = 〈v + ν (a, b)〉 = 〈w〉
which establishes (3).
We note that Lemma 13 (3) only depends on 〈v〉 and 〈w〉 and we will

write 〈v〉 → 〈w〉 if it holds.

Lemma 14 For any (a, b) ∈ S × S+ there is a∗ ∈ SP (a) such that

〈r (a, b)〉 = 〈a+ ν (a∗, b)〉 . (4)

Proof. By aggregation, it suffi ces to prove this when a is a Ki-offer for
some i. By flexibility there is some a∗ ∈ SP (a) such that ri (a∗, b) = 0, while
rj (a∗, b) has the same sign as rj (a, b) for all j 6= i. We write

a+ ν (a∗, b) = (a− a∗) + r (a∗, b)

and note that since a∗ is a pure Ki-offer, the sign of r (a∗, b) does not change
if we rescale a∗. If ri (a, b) = 0 we scale up a∗ to ensure a∗ = a, while if
rj (a, b) > 0 then we scale down a∗ to ensure a∗ � a; in each case the rescaled
a∗ satisfies (4).

Lemma 15 v1 → · · · → vt implies 〈v1〉 → · · · → 〈vt〉.

Proof. It suffi ces to show that v → w implies 〈v〉 → 〈w〉. Now by
definition

w = v + ν (a, b) for some (a, b) ∈ S × S+ with a ≤ v.
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If a∗ is as in (4) then the identities

v + ν (a∗, b) = (v − a) + (a+ ν (a∗, b))

v + ν (a, b) = (v − a) + r (a, b)

imply 〈v + ν (a∗, b)〉 = 〈w〉, whence 〈v〉 → 〈w〉 by Lemma 13 (1).

Proposition 16 For b ∈ S+ and any i 6= j there is a ∈ SP such that ν(a, b)
is an ı̄j-vector.

Proof. Let v be an i-vector and let t = τij (M) then by definition we
have a sequence

v → v1 → · · · → vt−1 = w

where w is a j-vector. By the previous lemma we get

〈v〉 →
〈
v1
〉
→ · · · →

〈
vt−1

〉
→ 〈w〉

By Lemma 13 (3) this means we can find sequences

ui ∈
〈
vi
〉
, ai ∈ SP

(
ui
)
for i = 0, . . . , t− 1

such that ui + ν (ai, b) = ui+1. If a =
∑
ai then we have a ∈ SP and

ν (a, b) =
∑
ν
(
ai, b

)
= ut − u1

which is an ı̄j-vector.
It will be convenient to write an ı̄j-vector in the form (−x, y) after sup-

pressing the other components. In the context of the above proposition if
ν (a, b) = (−x, y) then by linearity ν (a/x, b) = (−1, y/x), and we will say
that the offer a (or a/x) achieves an ij-exchange ratio of y/x at b.

Lemma 17 If a′, a′′achieve ij-exchange ratios α′, α′′ at b, then α′ = α′′.

Proof. By the previous proposition there exists an a such that ν (a, b) is
a j̄i-vector; if α is the corresponding exchange ratio then by rescaling a, a′, a′′

we may assume that

ν (a, b) = (1,−α) , ν (a′, b) = (−1, α′) , ν (a′′, b) = (−1, α′′) .

By Proposition 6 we get

ν (a+ a′, b) = (0, α− α′)
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Now by Non-dissipation we get α ≥ α′, and exchanging the roles of i and j
we conclude that α′ ≥ α and hence that α = α′. Arguing similarly we get
α = α′′ and hence that α′ = α′′.
Proof (of Theorem 8). Fix b ∈ S+ and consider the vector

p = (1, p2, . . . , pm)

where p−1
j is the 1j-exchange ratio at b, as in the previous lemma. We will

show that p satisfies the conditions of Theorem 8, i.e. that

p · ν (a, b) = 0 for all a. (5)

We argue by induction on the number d (a, b) of non-zero components of
ν (a, b) in positions 2, . . . ,m. If d (a, b) = 0 then ν (a, b) = 0 by non-
dissipation and (5) is obvious. If d (a, b) = 1 then ν (a, b) is either an 1̄j-
vector or a j̄1 vector, which by the definition of pj and the previous lemma
is necessarily of the form(

−x, xp−1
j

)
or
(
x,−xp−1

j

)
;

for such vectors (5) is immediate. Now suppose d (a, b) = d > 1 and fix j
such that νj (a, b) 6= 0. Then we can choose a′ such that ν (a′, b) is a 1̄j or
a j̄1- vector such that νj (a, b) = −νj (a′, b) . It follows that d (a+ a′, b) < d
and by linearity we get

p · ν (a, b) = p · ν (a+ a′, b)− p · ν (a′, b) .

By the inductive hypothesis the right side is zero, hence so is the left side.
Finally the uniqueness of the price function is obvious, because the return

function of the mechanism dictates how many units of j may be obtained for
one unit of i, yielding just one possible candidate for the exchange rate for
every pair ij.

7 Proof of Theorem 11

We say a matrix X is an S×T matrix if its rows and columns are indexed by
finite sets S and T respectively; if Y is a T ×U matrix then the product XY
is a well-defined S × U matrix. For the set [n] = {1, . . . , n} we will speak of
n× T matrices instead of [n]× T matrices, etc.
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LetM ∈M(m) and writeKi = Ki (M) andK =
∐

iKi as usual. For any
vector v ∈ Rm++, let Dv denote the m×m diagonal matrix diag{v1, . . . , vm} ,
and let Ev denote the K×K “extended”diagonal matrix whose Ki-diagonal
entries are all vi. Also let A be the m × K “auxiliary”matrix whose K1-
columns are (1, 0, . . . , 0)t, K2-columns are (0, 1, 0, . . . , 0)t, etc.

Lemma 18 M is uniquely determined by a map b 7→ Nb from S+ to the
space of non-negative m×K column-stochastic matrices as follows.

1. The price ray p = p(b) is obtained as the unique solution of

Cbp = ∆bp (6)

where ∆b = ADbA
t is the diagonal matrix of column sums of Cb =

NbDbA
t

2. The return function is given by

r (a, b) = Mba where Mb = D−1
p NbEp (7)

Proof. Let p = p(b) be the price function whose existence is guaranteed
by Theorem 8. We will first prove formula 7 for r(a, b) and then prove formula
6. By Proposition 6, the return function of the mechanism M is of the form
r (a, b) = Mba, where b 7→Mb is a map from S+ to the space of non-negative
m× k matrices satisfying

Mbb = Ab

and the identity
MEvb = DvMbE

−1
v for all v ∈ Rm

++. (8)

(The non-negativity Mb follows from that of r (a, b). The first display holds
by conservation of commodities and the second by invariance.) Define

b′ = Epb, Nb = Mb′ .

By invariance it follows that p(b′) = 1. Also each column of Nb = Mb′ is
the return to the offer of a single unit in some commodity. Since all prices
are 1 at b′, Theorem 8 implies that each column of Nb sums to 1, i.e., Nb is
column stochastic. Now by (8) we get

Nb = MEpb = DpMbE
−1
p ,
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whence Mb = D−1
p NbEp as desired

Now combining (7) andMbb = Ab, with the identity DpA = AEp we have

NbEpb = DpMbb = DpAb = AEpb.

Using the identity Epb = DbA
tp we can rewrite this as

NbDbA
tp = ADpA

tb,

which is precisely (6).

Lemma 19 Let Nb in Lemma 18 and let h ∈ Ki be an ij-market.

1. The h-th column of Nb is the j-th unit vector ej, independent of b.

2. EveryKi-column of Nb is a linear combination of the “pure”Ki-columns.

Proof. By definition there is an h-offer a such that r (a, b) = Mba is a
j-return vector. This means that the h-th column ofMb has a non-zero entry
only in its j-th component. Since Nb is obtained fromMb by rescaling entries
this is also true of Nb. By column stochasticity the h-th column of Nb must
be ej.
For the second part, let h′ ∈ Ki be an i-index, let v, w be the h′-th

columns of Nb and Mb, and suppose the j-th component of v (and hence of
w) is non-zero. It suffi ces to show that in this case the mechanism has an
ij-market. However if a is an h′-offer then r (a, b) = Mba is a multiple of w,
and thus the assertion follows from the flexibility axiom.
Let G be the graph in which we connect i to j if M has an ij-market.

Since M is connected, Lemma 15 implies that G is connected, and we let
M ′ = MG denote the corresponding G-mechanism. We will identify the i-
indices K ′i of M

′ as a subset of Ki. If M has several pure ij-indices for a
given j then this involves a choice, however the choice will play no role in the
subsequent discussion. We will refer to M ′ as the embedded G-mechanism
of M .
To continue we need a result from [35]. Let G be any connected directed

graph on {1, . . . , n} with weights zij attached to edges ij ∈ G. We write
Z = (zij) for the n×n matrix of edge weights of G, setting zij = 0 if ij /∈ G.
We also define

δj =
∑

izij, ∆Z = diag (δ1, . . . , δn) ,
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so that ∆ is the diagonal matrix of column sums of Z. We define the weight
of a subgraph Γ to be the product of its edge weights, thus

wΓ (z) =
∏

ij∈EΓ
zij.

We define an i-tree in G to be a (directed) subgraph T with n vertices and
n − 1 edges, and the futher property that T contains a path from j to i for
every j 6= i. We write Ti for the set of i-trees in G, and define

wi =
∑

Γ∈Ti
wΓ (z) , w = (w1, . . . , wn)t .

The following lemma from [35] is critical and paves the way for the rest of
the analysis.

Lemma 20 If Z,∆Z , w are as above then one has Zw = ∆Zw.

We can now prove a key property of embedded G-mechanisms.

Proposition 21 If a price ratio depends on some variable in M ′, then it
does so in M .

Proof. The pure columns of Nb are fixed unit vectors, independent of
b. By assumption there is a bijection between the pure variables and the
nonzero entries crs (b) of the matrix Cb. We denote the pure components of
b by x = (xrs) and the remaining mixed components by y = (yk). Then by
the definition of Cb we have an expression of the form

crs (b) = xrs +
∑

k
εk (b) yk; 0 ≤ εk (b) ≤ 1. (9)

By formula (6) and Lemma 20, the prices p in M and M ′ are weighted sums
of trees with edge weights crs and xrs repectively. Let p (x, y) denote the
price vector in M at b = (x, y) and let p (x) denote the price vector in M ′ at
x. Then by (9) we get

p (x) = lim
y→0

p (x, y) .

We now fix a pair of commodities i, j and let π (x, y) and π (x) denote
the price ratios pi/pj in M and M ′ respectively, then we have

π (x) = lim
y→0

π (x, y) .

26



Thus if π (x) depends on some x-component, so must π (x, y).
Proof (of Theorem 11). By lemma 15, lemma 19 and the previous

proposition (respectively), we have:

τij (M ′) = τij (M) , k (M ′) ≤ k (M) , πij (M ′) ≤ πij (M)

If M is strongly minimal then equality must hold throughout. Hence we get
k (M ′) = k (M) and so M = M ′ is a G-mechanism.

8 Complexity of G-mechanisms

Let G be a connected graph on {1, . . . ,m} as in section 4.2. Combining
formula (1) and Lemma 20 we get the following explicit formula for the price
vector p = p (G) = p (G, b) of the associated mechanism MG.

Lemma 22 We have pi =
∑

T∈Ti wT (b).

The price ratio function pij (G) = pi (G) /pj (G) can be expressed as a
rational function in the variables bkl, and by definition (see section 3.3) πij =
πij (G) is the number of variables that remain in this expression after all
possible cancellations have been taken into account. We will write π (G) =
maxij πij (G) for the complexity of the G-mechanism.

8.1 Graphs with complexity ≤ 4

If G consists of a single vertex then π (G) = 0 by definition.

Lemma 23 If G is a cycle then π (G) = 2.

Proof. Each vertex i in a cycle has a unique outgoing edge, and we
denote its weight by ai. For each i we have pi = bG/ai; hence pi/pj = aj/ai
and the result follows.
By a chorded cycle we mean a graph that is a union G = C ∪P where C

is a cycle and P , the chord, is a path that connects two distinct vertices of
C, but which is otherwise disjoint from C.

Lemma 24 If G = C ∪ P is a chorded cycle then π (G) = 4.
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Proof. Let i be the initial vertex of the path P , then i has two outgoing
edges, ij and ik say, on the cycle and path respectively. Any vertex l 6= i
has a unique outgoing edge, and we denote its weight by al as before. Let
x be the terminal vertex of the path P . If x = j then G has two j-trees,
otherwise there is a unique j-tree; similarly if x = k then there are two
k-trees, otherwise there is a unique k-tree. Thus we get the following table:

x = j x = k x 6= j, k
pj/bG a−1

j

(
b−1
ik + b−1

ij

)
a−1
j b−1

ik a−1
j b−1

ik

pk/bG a−1
k b−1

ij a−1
k

(
b−1
ik + b−1

ij

)
a−1
k b−1

ij

In every case, the ratio pj/pk depends on all 4 variables aj, ak, bij, bik, thus
π (G) ≥ 4.
On the other hand, since all vertices other than i have a unique outgoing

edge, it follows that if x is any vertex then every x-tree contains all the
outgoing edges except perhaps the edges bij, bik and ax (if x 6= i); thus px
is divisible by all other weights. It follows that for any two vertices x, y
the ratio px/py can only depend on the variables bij, bik, ax, ay. Thus we get
π (G) ≤ 4 and hence π (G) = 4 as desired.

Remark 25 A special case of a chorded cycle is a graph T0 with three vertices
that we call a chorded triangle.

3
↑↓ ↖
1 −→ 2

p1 b23b31

p2 b12b31

p3 b23 (b12 + b13)

p1/p2 b23/b12

p2/p3 b12b31/b23 (b12 + b13)
p3/p1 (b12 + b13) /b31

For future use we note that for each index j there is an i such that πij ≥ 3.

By a k-rose we mean a graph that is a union C1 ∪ · · · ∪ Ck, where the
Ci are cycles that share a single vertex j, but which are otherwise disjoint.
Thus a 0-rose is a single vertex and a 1-rose is a cycle. If G is a k-rose for
some k ≥ 2 then we will simply say that G is a rose.
If each cycle in a rose G has exactly two vertices, i.e. is a bidirected edge,

then we say that G is a star.

Lemma 26 If G is a rose then π (G) = 4.
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Proof. Let G be the union of cycles C1 ∪ · · · ∪Ck with common vertex j
as above. Let a1, . . . , ak be the weights of the outgoing edges from j in cycles
C1, . . . , Ck respectively, and for all other vertices x let bx denote the weight
of the unique outgoing edge at x. It is easy to see that there for each vertex v
of G there is a unique v-tree, and thus the price vectors are given as follows:

pj =
∏
x 6=j

bx, px =
aipj
bx

if x 6= j is a vertex of Ci

Thus we get

pj/px = bx/ai, py/px = bxal/byai if y 6= j is a vertex of Cl

Taking i 6= l, we see that py/px depends on 4 variables, and π (G) = 4.
Our main result is a classification of connected graphs with π (G) ≤ 4.

Theorem 27 If G is not a chorded cycle or a k-rose, then π (G) ≥ 5.

We give a brief sketch of the proof of this theorem, which will be carried
out in the rest of this section. The actual proof is organized somewhat
differently, but the main ideas are as follows.
We say that a graph H is a minor of G, if H can be obtained from G by

removing some edges and vertices, and collapsing certain kinds of edges. Our
first key result is that the property π (G) ≤ 4 is a hereditary property, in the
sense that connected minors of such graphs also satisfy the property. The
usual procedure for studying a hereditary property is to identify the forbidden
minors, namely a set Γ of graphs such that G fails to have the property iff
it contains one of the graphs from Γ. We identify a finite collection of such
graphs. The final step is to show that if G is not a chorded cycle or a k-rose
then it contains one of the forbidden minors.

8.2 Subgraphs

Throughout this section G denotes a connected graph. We say that a graph
H is a subgraph of G if H is obtained from G by deleting some edges and
vertices.

Proposition 28 If G′ is a connected subgraph of G then π (G) ≥ π (G′).
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Proof. For a vertex i in G′ let p′i and pi denote its price in G
′ and G

respectively; we first relate p′i to a certain specialization of pi.
Let E,E ′ be the edge sets of G,G′ respectively, and let E0 (resp. E1)

denote the edges in E \ E ′ whose source vertex is inside (resp. outside) G′.
Let p̄i be the specialization of pi obtained by setting the edge weights in E0

and E1 to 0 and 1 respectively. Then we claim that

p′i = |F | p̄i, (10)

where F is the set of directed forests φ in G such that

1. the root vertices of φ are contained in G′,

2. the non-root vertices of φ consist of all G-vertices not in G′.

Indeed, consider the expression of pi as a sum of i-trees in G. The spe-
cialization p̄i assigns zero weight to all trees with an edge from E0. The
remaining i-trees in G are precisely of the from τ ∪ φ where τ is an i-tree
in G′ and φ ∈ F , and these get assigned weight wt (τ). Formula (10) is an
immediate consequence.
Now if i, j are vertices in G′, then formula (10) gives

p′i
p′j

=
p̄i
p̄j

Thus the ij price ratio in G′ is obtained by a specialization of the ratio
in G. Consequently the former cannot involve more variables. Taking the
maximum over all i, j we get π (G) ≥ π (G′) as desired.

8.3 Collapsible edges

We write out(k) for the number of outgoing edges at the vertex k. In a
connected graph we have out(k) ≥ 1 for all vertices, and we will say k is
ordinary if out(k) = 1 and special if out(k) > 1. Among special vertices, we
will say that k is binary if out(k) = 2 and tertiary if out(k) = 3.

Definition 29 We say that an edge ij of a graph G is collapsible if

1. i is an ordinary vertex
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2. ji is not an edge of G

3. there is no vertex k such that ki and kj are both edges of G.

Definition 30 If G has no collapsible edges we will say G is rigid.

If G is a connected graph with a collapsible edge ij, we define the ij-
collapse of G to be the graph G′ obtained by deleting the vertex i and the
edge ij, and replacing any edges of the form li with edges lj. The assumptions
on ij imply that the procedure does not introduce any loops or double edges,
hence G′ is also simple (and connected). Moroever each vertex k 6= i has the
same outdegree in G′ as in G.

Lemma 31 If G′ is the ij-collapse of G as above, then π (G) ≥ π (G′) .

Proof. Let k be any vertex of G′ then k is also a vertex of G. Since i
is ordinary every k-tree in G must contain the edge ij; collapsing this edge
gives a k-tree in G′ and moreover every k-tree in G′ arises uniquely in this
manner. Thus we have a factorization

pk (G) = aijpk (G′) .

Thus for any two vertices k, l of G′ we get pk (G) /pl (G) = pk (G′) /pl (G
′)

and the result follows.
We will say thatH is a minor ofG if it is obtained fromG by a sequence of

steps of the following kind: a) passing to a connected subgraph, b) collapsing
some collapsible edges. By Proposition 28 and Lemma 31 we get

Corollary 32 If H is a minor of G then π (H) ≤ π (G) .

8.4 Augmentation

Throughout this section G denotes a connected graph. We write H � G if H
is a connected subgraph of G, and write H ≺ G to mean H � G and H 6= G.
We say that H ≺ G can be augmented if there is a path P in G whose

endpoints are in H, but which is otherwise completely disjoint from H. We
refer to P as an augmenting path of H, and to K = H ∪P as an augmented
graph of H; note that K is also connected, i.e. K � G. It turns out that
augmentation is always possible.
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Lemma 33 If H ≺ G then H can be augmented.

Proof. If G and H have the same vertex set then any edge in G \ H
comprises an augmenting path. Otherwise consider triples (k, P1, P2) where
k is a vertex not in H, P1 is a path from some vertex in H to k, and P2

is a path from k to some vertex in H. Among all such triples choose one
with e (P1) + e (P2) as small as possible. Then P1 and P2 cannot share any
intermediate vertices with H or with each other, else we could construct a
smaller triple. It follows that P = P1 ∪ P2 is an augmenting path.
We are particularly interested in augmenting paths for H that consist of

one or two edges; we refer to these as short augmentations of H.

Corollary 34 If H ≺ G then G has a minor that is a short augmentation
of H.

Proof. LetK = H∪P be an augmentation of H. If P has more than two
edges, then we may collapse the first edge of P in K. The resulting graph is
a minor of G, which is again an augmentation of H. The result follows by
iteration.

Lemma 35 If K = H ∪P with P = {jk, kl}, then for any vertex i of H we
have πik (K) = πij (H) + 2.

Proof. The edges (j, k) and (k, l) are the unique incoming and outgoing
edges at k. It follows that every i-tree in K is obtained by adding the edge
kl to an i-tree in H, and every k-tree in K is obtained by adding the edge
jk to a j-tree in H. Thus if ajk and akl are the respective weights of the two
edges in the path P then we have

pi (K) = aklpi (H) , pk (K) = ajkpj (H) =⇒ pi (K)

pk (K)
=
akl
ajk

pi (H)

pj (H)

Thus the price ratio in question depends on two additional variables, and the
result follows.

Corollary 36 If G contains the chorded triangle T0 as a proper subgraph
then π (G) ≥ 5.
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Proof. By the previous corollary G has a minor K = T0 ∪ P , which is
a short augmentation of T0, and it is enough to show that π (K) ≥ 5. If
P consists of two edges {jk, kl} then by Remark 25 we can choose i such
that πij (T0) = 3; now by the previous lemma we have cik (K) = 5 and hence
π (K) ≥ 5. If P consists of a single edge then K is necessarily as below, and
once again π (K) ≥ 5.

2
↑↓ ↘
1 � 3

p1/p3

b31 (b21 + b23)

b23b12 + b23b13 + b21b13

8.5 The circuit rank

As usual G denotes a simple connected graph, and we will write e (G) and
v (G) for the numbers of edges and vertices of G.

Definition 37 The circuit rank of G is defined to be

c (G) = e (G)− v (G) + 1

The circuit rank is also known as the cyclomatic number, and it counts
the number of independent cycles in G, see e.g. [3].

Example 38 If G is a k-rose then c (G) = k, and if G is a chorded cycle
then c (G) = 2.

We now prove a crucial property of c (G).

Proposition 39 If H ≺ G then there is some K � G such that H ≺ K and
c (K) = c (H) + 1.

Proof. Let K = H ∪ P be an augmentation of H. If P consists of
m edges, then K has e (H) + m edges and v (H) + m − 1 vertices; hence
c (K) = c (H) + 1.

Corollary 40 Let G be a connected graph.

1. If H ≺ G then c (H) < c (G).
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2. c (G) = 0 iff G is a single vertex.

3. c (G) = 1 iff G is a cycle.

4. c (G) = 2 iff G is a chorded cycle or a 2-rose.

Proof. The first part follows from the previous proposition, the other
parts are completely straightforward.

Lemma 41 If G is not a rose and c (G) > 3, then there is some K ≺ G
such that K is not a rose and c (K) = 3.

Proof. Let R be a k-rose in G with c (R) = k as large as possible, then
R ≺ G by assumption. If c (R) ≤ 2 then any K ≺ G with c (K) = 3 is not a
rose. Thus we may assume that c (R) > 2, and in particular R has a unique
special vertex i and at least three loops. Since R 6= G, R can be augmented,
and S = R ∪ P is an augmentation, then P cannot both begin and end at i,
else R ∪ P would be a rose, contradicting the maximality of R. Since there
are at most two endpoints of P, we can choose two distinct loops L1 and L2

of R, such that L1∪L2 contains these endpoints of P . Then K = L1∪L2∪P
is the desired graph.

8.6 Covered vertices

Definition 42 Let i be an ordinary vertex of G with outgoing edge ij. We
say that a vertex k covers i, if one of the following holds:

1. the edges ki and kj belong to G

2. j = k and the edge ki belongs to G

If there is no such k then we say that i is an uncovered vertex.

We emphasise that the terminology covered/uncovered is only applicable
to ordinary vertices in a graph G. The main point of this definition is the
following simple observation.

Remark 43 An ordinary vertex is uncovered iff its outgoing edge is collapsi-
ble.
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Lemma 44 Suppose G is a connected graph .

1. If v (G) ≥ 3 then an ordinary vertex cannot cover another vertex.

2. If v (G) ≥ 4 then a binary vertex can cover at most one vertex.

3. A tertiary vertex can cover at most three vertices.

4. If G is a rigid graph with c (G) = 3, then v (G) ≤ 4.

Proof. If k is an ordinary vertex covering i then G must contain the
edges ki and ik. Thus i and k do not have any other outgoing edges, and if
G has a third vertex j then there is no path from k or i to j, which contradicts
the connectedness of G, thereby proving the first statement.
If k is a binary vertex covering the ordinary vertices i and j then G must

contain the edges ki, kj, ij, ji. The vertices i, j, k cannot have any other
outgoing edges, so a fourth vertex would contradict the connectedness of G
as before. This proves the second statement.
If a vertex k covers i then there must be an edge from k to i. Thus if

out(k) = 3 then k can cover at most three vertices.
If c (G) = 3 then G has either 2 binary vertices or 1 tertiary vertex, with

the remaining vertices being ordinary. If v (G) > 4 then by previous two
paragraphs G would have an uncovered vertex, which is a contradiction.

8.7 Proof of Theorem 27

Proposition 45 If c (G) ≥ 3 and G is not a rose, then π (G) ≥ 5.

Proof. By Proposition 28 and Lemma 41 we may assume that c (G) = 3.
By Lemma 31, we may further assume that G is rigid, and thus by Lemma
44 that v (G) ≤ 4. We now divide the argument into three cases.
First suppose that G contains a 3-cycle C. We claim that at least one of

the edges of C must be a bidirected edge in G, so that G properly contains
a chorded triangle T0, whence π (G) ≥ 5 by Corollary 36. Indeed if G has no
other vertices outside C, then G must have 5 edges and 3 vertices and the
claim is obvious. Thus we may suppose that there is an outside vertex l. We
further claim that C contains two vertices i, j such that i covers j. Granted
this, it is immediate that G contains either the bidirected edge ij and ji, or
the bidirected edge jk and kj where k is the third vertex of C. To prove the
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“further”claim we note that the special vertices of G consist of either a) one
tertiary vertex, or b) two binary vertices. In case a) the connectedness of G
implies that the tertiary vertex must be in C, and hence it must cover both
the ordinary vertices in C. In case b) either C contains both binary vertices,
one of which must cover the unique ordinary vertex of C; or C contains one
binary vertex, which must cover one of the two ordinary vertices of C.
Next suppose that G does not contain a 3-cycle, but does contain a 4-

cycle labeled 1234, say. Now G has two additional edges, which cannot be
the diagonals 13, 31, 24, 42, since otherwise G would have a 3-cycle; therefore
G must have two bidirected edges. The bidirected edges cannot be adjacent
else G would have a collapsible vertex, therefore G must be the first graph
below, which has π (G) ≥ 5.

2 −→ 3
↑↓ ↑↓
1 ←− 4

p1/p3

b21b34b41

b23b12 (b41 + b43)

2 � 3
↑↓ ↑↓
1 4

p1/p4

b21b32b43

b34b23b12

Finally suppose G has no 3-cycles or 4-cycles. Then every edge must be
a bidirected edge, and G must be a tree with all bidirected edges. Since G is
not a star, this only leaves the second graph above, which has π (G) ≥ 6.
We can now finish the proof of Theorem 27.
Proof. (of Theorem 27) If c (G) ≤ 2 then by the previous corollary, G

is a single vertex, a cycle, chorded cycle or a 2-rose. If c (G) ≥ 3 then the
result follows by the previous proposition.

9 Proof of Theorem 12

In this section, after a couple of preliminary results, we apply Theorem 27
to prove Theorem 12.

Lemma 46 If G is a chorded cycle on 4 or more vertices, then τ (G) ≥ 3.

Proof. We can express G as a union of two paths P,Q from 1 to 2, say
and a third path R from 2 to 1. At least one of the first two paths, say P
must have an intermediate vertex, say 3. Since m ≥ 4 there is an additional
intermediate vertex 4 on one of the paths.
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If m = 4 then we get three possible graphs depending on the location of
the vertex 4.

3 → 4
↑ ↓
1 � 2

3 → 2
↑ ↗ ↓
1 ← 4

3 → 2
↑ ↙ ↑
1 → 4

For these graphs we have τ24 = 3, τ42 = 3 and τ34 = 3, respectively. Thus
τ (G) ≥ 3 in all three cases.
If m > 4 then G can be realized as one of these graphs, albeit with

additional intermediate vertices on one or more of the paths P,Q,R. These
additional vertices are ordinary uncovered vertices, with collapsible outgoing
edges. Collapsing one of these edges does not increase time complexity, and
produces a smaller chorded cycle G′. Arguing by induction onm we conclude
τ (G) ≥ τ (G′) ≥ 3.

Lemma 47 If G is the complete graph, then πij (G) = m (m− 1) for all
i 6= j.

Proof. Fix a pair of vertices i 6= j in G, then we claim that the price
ratio pij (G) depends on each of the m (m− 1) edge weights bkl. Indeed if
H is any "spanning" connected subgraph of G then pij (H) is obtained from
pij (G) by specializing to 0 the weights of all edges outside H. Therefore it
suffi ces to find a connected subgraph H such that pij (G) depends on bkl.
We consider two cases. If {i, j} = {k, l} then exchanging i, j if necessary

we may assume i = k, j = l. Let H be an m-cycle two of whose edges are ij
and hi (say); then pi/pj = bhi/bij depends on bkl = bij.
If {i, j} 6= {k, l} then let H be an 2-rose with loops C1 and C2 such that

1. k is the special vertex, and kl is an edge in C1

2. i belongs to C1 and j belongs to C2

Then pi and pj are each given by unique directed trees Ti and Tj. Moreover
Ti involves kl while Tj does not. Hence pij (H) depends on bkl.
Proof. (of Theorem 12) The star mechanism has complexity (τ, π) =

(2, 4). Therefore if G is any strongly minimal graph then either τ (G) = 1
or π (G) ≤ 4. For τ (G) = 1 we get the complete graph, which has complex-
ity (τ, π) = (1,m (m− 1)) by Lemma 47. The graphs with π (G) ≤ 4 are
characterized by Theorem 27, and we have three possibilities for G.
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1. Chorded cycle. In this case we have (τ, π) = (3+, 4) by Lemma 46, and
so G is not strongly minimal.

2. Cycle. In this case we have (τ, π) = (m− 1, 2) by Lemma 23.

3. k-rose, k ≥ 2. If each petal of G has exactly 2 edge then G is the star
mechanism. Otherwise after collapsing edges, we obtain the minor

1
↓ ↖
· → · � 2

with τ12 = 3.

Thus G has complexity (τ, π) = (3+, 4) and so is not strongly minimal.

Thus the three graphs in the statement of Theorem 12 are the only possible
strongly minimal mechanisms, and have the indicated complexities. Since
they are incomparable with each other, each is strongly minimal.

Remark 48 For m = 3, Lemma 46 does not hold and we have an additional
strongly minimal mechanism with (τ, π) = (2, 4), namely the chorded triangle

·
↓ ↖
· � ·

10 A Continuum of Traders

Our analysis easily extends to the case where the set of individuals T is the
unit interval [0, 1], endowed with a nonatomic population measure 18. Let S
denote the collection of all integrable functions a : T 7→ S such that

∫
T
a ∈

S+. (An element of S represents a choice of offers by the traders in T which
are positive on aggregate.) In the same vein, let R denote the collection of
all integrable functions from T to C, whose elements r : T 7→ C represent
returns to T. An exchange mechanism M , on a given set of m commodities,
is a map from S to R such that, if M maps a to r then we have (reflecting
conservation of commodities): ∫

T

a =

∫
T

r

18Denote the measure µ. And since µ is to be held fixed throughout, we may suppress
it, abbreviating

∫
T
f (t)dµ(t) by

∫
T
f for any measurable function f on [0, 1] .
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We wrap the aggregation and anonymity conditions into one, and directly
postulate that the return to any individual depends only on his own offer and
the integral of everyone’s offers, and that this return function is the same for
everyone. Thus we have a function r from S×S+ to C such that r(t) = r(a, b),
where a = a(t) and b =

∫
T
a.

The rest of the analysis is exactly the same (with obvious modifications
in the notation, occasioned by the continuum). The only difference is in the
proof of the fact that r is linear in the first factor and homogeneous of degree
0 in the second, which proceeds as follows.

Proposition 49 (Linearity). For any fixed b, r(a, b) is a linear function of
a.

Proof. (This simple argument is as in [Dubey-MasColell-Shubik].) We
will first show that if a, c ∈ S and 0 < λ < 1, then

r(λa+ (1− λ)c, b) = λr(a, b) + (1− λ)r(c, b)

There clearly exists an integrable map d from T = [0, 1] to space of of-
fers S such that (i) positive mass of traders choose a in d; (ii) positive
mass of traders choose c in d ; and (iii) the integral of d on T is b. So∫
T
r(dα,b)dµ(α) =

∫
T
r(d,b) = b since commodities are conserved. Shift ελ

mass from a to λa+(1−λ)c and (1−λ)ε mass from c to λa+(1−λ)c , letting
the rest be according to d. This yields a new function (from T to S ) which
we call e. Clearly the integral of e on T is also b. Therefore, once again by
conservation of commodities, we must have

∫
T
r(e,b) = b, hence

∫
T
r(d,b) =∫

T
r(e,b). But this can only be true if the displayed equality holds, proving

that (every coordinate of) r is affi ne in a for fixed b.
Now r(0, b) ≥ 0 by assumption. Suppose r(0, b) � 0. Partition T into

two non-null sets T1 and T2. Consider the case where all the individuals in T1

offer 0, and all in T2 offer b/µ(T2). Then, since everone in T1 gets the return
r(0, b) � 0, by conservation of commodities everyone in T2 gets b − µ(T1)
r(0, b) � b/µ(T2), contradicting non-dissipation. So r(0, b) = 0, showing r is
linear.

Proposition 50 (Homogeneity) r(a, λb) = r(a, b) for any a, b and positive
scalar λ

Proof. This follows from λr(a, b) = r(λa, λb) = λr(a, λb),where the first
equality comes from invariance and the second from the Linearity Proposi-
tion.

39



Remark 51 As mentioned in the introduction, when there is a continuum
of traders, the star mechanism leads to equivalence (or, near-equivalence) of
Nash and Walras equilibria under suitable postulates regarding the commodity
or fiat money. (See [7] for a detailed discussion.)
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