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Tensor products of singular representations and an extension
of the θ-correspondence
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Abstract. In this paper we consider the problem of decomposing tensor products of certain
singular unitary representations of a semisimple Lie group G. Using explicit models for these
representations (constructed earlier by one of us) we show that the decomposition is controlled
by a reductive homogeneous space G′/H′. Our procedure establishes a correspondence between
certain unitary representations of G and those of G′. This extends the usual θ-correspondence for
dual reductive pairs. As a special case we obtain a correspondence between certain representations
of real forms of E7 and F4.
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0. Introduction

Let F be a field and ε some fixed additive character of F . If W is a finite dimen-
sional vector space over F endowed with a non-degenerate skew-symmetric form,
we can consider an associated Heisenberg group H(W ). Denote by ρε an irre-
ducible unitary representation of H(W ) on which the center of H(W ) operates via
the character ε (it is unique by the theorem of Stone and von Neumann). Since the
symplectic group Sp(W ) operates on H(W ) via its action on the vector space W ,
it also acts on the representation ρε. The action is trivial on the center of H(W )
and therefore, for any g ∈ Sp(W ), there is an operator ωε(g) (unique up to scaling)
which intertwines ρε with ρgε . These operators form the oscillator representation
of Sp(W ). In general, the oscillator representation ωε is projective, but it always
corresponds to an ordinary representation of a two-fold cover of Sp(W ). This cover

is denoted by S̃p(W ) and is called the metaplectic group.

S. Sahi was supported by an NSF grant.
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The oscillator representation originated in the works of Segal and Shale and
was immortalized by Weil, who used it in his construction of the theta-functions
on the metaplectic group [W]. In one of the earliest works on the spectrum of
the Weil (oscillator) representation, Gelbart [G1] studied the decomposition of
the tensor product ω′ = ω⊗k, where ω is the oscillator representation of the real
symplectic group Sp(2m,R) and k ≥ 2m. He demonstrated that for k = 2m
all representations of the holomorphic discrete series for Sp(2m,R) occur in the
spectrum of ω′. Kashiwara and Vergne [KV] extended the results of [G1] to tensor
products ω⊗k, k ≥ 1. In particular, any unitary highest weight representation of
Sp(2m,R) will appear in the decomposition of ω⊗k for some appropriate value of k.

Later, the approach of [G1] and [KV] was replaced by the modern approach to
the θ-correspondence. One starts with a reductive dual pair of algebraic groups
G and G′, defined over some local field F , which are mutual centralizers inside
a symplectic group Sp. Let ω be an oscillator representation of the metaplectic
group S̃p on a Hilbert space H, and let E ⊂ S̃p denote the preimage of a reductive
subgroup E ⊂ Sp. Denote by R(E) the set of (equivalence classes) of continuous
irreducible representations of E on a locally convex space, which can be realized
as quotients of H∞ by ω(E)-invariant subspaces.

Conjecture 0.1 (Howe’s duality conjecture). The set R(G ·G′) is the graph of a
bijection between all of R(G) and all of R(G′). Moreover, an element of R(G ·G′)
occurs as a quotient of ω in a unique way.

Howe’s conjecture has been proved for F = R or C [Ho2], and also for all
non-Archimedean local fields of odd residue characteristic. The resulting corre-
spondence between the irreducible representations of G and those of G′ is called
the Howe duality correspondence, or the θ-correspondence. In general, this cor-
respondence does not preserve unitarity, i.e., a unitary representation of G can
correspond to a non-unitarizable representation of G′.

If one member of a dual pair (say G′) is much “smaller” than the second group,
unitarity is preserved and the duality correspondence is a particularly nice one
(this is a so called stable range duality [Ho1], [L1]). We denote by Ĝ(ε) and Ĝ′(ε)
the subsets of the unitary duals of G and G

′
consisting of those unitary irreducible

representations whose restriction to the kernel of the projection S̃p → Sp (i.e.,
the group Z2) is a multiple of the non-trivial character of Z2. Then the Howe
correspondence gives an injection Ĝ′(ε) ↪→ Ĝ(ε). In many cases the coverings
G→ G and G

′ → G′ are trivial, and we obtain an injection of the unitary dual of
G′ into that of G.

Example. G′ = U(1) and G = U(p, q) form a stable range dual pair inside Sp(2p+
2q,R). The representations of U(p, q) appearing in the θ-correspondence for this
reductive dual pair are the “ladder” representations, which were given this name
because their K-types lie along a line, i.e., their highest weights are obtained from
the highest weight of the lowest K-type by adding multiples of a single vector.
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The duality conjecture also has a global version [G2, 2.5], when F is a global
field, A is an adele ring of F , and one considers a dual pair inside a symplectic
group over A. This version is of considerable representation- and number-theoretic
interest, since the global duality correspondence provides a way to lift automorphic
forms between members of a dual pair [G2], [P]. For example, if G′ = S̃L(2) and
G ' PGL(2) is realized as an orthogonal group preserving a 3-variables quadratic
form Q(x1, x2, x3) = x2

1−x2x3, the θ-correspondence produces the Shimura lifting
which associates a modular form of weight n− 1 to a modular form of half-integral
weight n/2.

It is a remarkable fact that every classical group and no exceptional group can
be realized as a member of a reductive dual pair. It seems desirable to determine
whether one can extend this theory to other reductive groups in a reasonable man-
ner. In this paper we attempt to extend the original ([G1], [KV]) approach to the
θ-correspondence. We study the decompositions of tensor products of certain small
unitary representations of a real reductive groupG and construct a parametrization
of the spectra of these tensor products.

Let Ω be a symmetric tube domain of rank n, and G = Aut(Ω). The Shilov
boundary of Ω is of the form G/P where P = LN is the Siegel–Poincaré parabolic
subgroup of G. The nilradical N is abelian and so is isomorphic to its Lie algebra n,
and the Levi subgroup L has finitely many (coadjoint) orbits on n∗. These orbits
are indexed by their “signatures”, where a signature p consists of a pair of non-
negative integers p = (p+, p−) with |p| def= p+ + p− ≤ n.

Every non-open orbit (with |p| < n) has a canonical L-equivariant measure,
and the main result of [S] is the construction of an irreducible representation of
the universal cover of G on the associated L2-space. Usually these representations
descend to G, and in all cases they can be viewed as linear representations of a
certain double cover of G, denoted by G. In this paper we consider the problem
of decomposing certain tensor products of these representations. More precisely,
let Π = π1 ⊗ · · · ⊗ πs be the tensor product of representations associated to orbits
Op1 , . . . ,Ops whose signatures pi = (p+

i , p
−
i ) satisfy

(p+
1 + p−1 ) + · · ·+ (p+

s + p−s ) ≤ n. (1)

Under assumption (1), which is an analogue of the stable range condition for the
θ-correspondence, each of the following spaces contains an open and dense L-orbit

O ≡ Op1 + . . .+Ops , O′ ≡ Op1 × . . .×Ops .

Fix a generic point ξ′ = (ξ1, . . . , ξk) in O′ such that ξ = ξ1 + . . . + ξk is generic
in O. We denote the inverse images of L and P in G by L and P , respectively. Let
S and S′ be the stabilizers of ξ′ and ξ in L, and let χξ be the unitary character of

N defined by χξ(expx) def= exp(i 〈ξ, x〉) for x ∈ n.
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Theorem 0.2. The restriction of Π to P is isomorphic to ν ⊗ IndPS′N (1 ⊗ χξ),
where ν is a certain unitary character of P .

In general, S, S′ are not reductive, however they contain reductive groups G′

and H ′ and a common normal subgroup N such that S = G′nZ and S′ = H ′nZ.
We consider the direct integral decomposition

L2(G′/H ′) =

⊕∫
π∈Ĝ′

m(π)π dµ(π).

For each π occurring in L2(G′/H ′), we define Θ(π) ∈ P̂ by

Θ(π) = ν ⊗ IndPG′ZN (π ⊗ 1⊗ χξ).

By Mackey theory, Θ(π) is irreducible, and Theorem 0.2 implies

Theorem 0.3. The restriction of Π to P has the decomposition

Π|P =

⊕∫
π∈Ĝ′

m(π)Θ(π) dµ(π). (2)

The main result of the paper is the following

Theorem 0.4. For almost every π (with respect to the Plancherel measure dµ),
Θ(π) extends to an irreducible representation of G, so that (2) is also a G-decom-
position. If

∑s
i=1 |pi| < n, this extension is unique.

Thus the map π → Θ(π) gives a (measurable) bijection between unitary repre-
sentations of G occurring in Π and the unitary representations of G′ occurring in
L2(G′/H ′).

We now discuss some special cases of the above result:
If s = 2, then G′/H ′ is a symmetric space, which is Riemannian if and only

if Op1 and Op2 both have definite signatures (of the form (p+, 0) or (0, p−)). Posi-
tive (resp. negative) definite orbits correspond to the highest (resp. lowest) weight
singular representations of G, and in this case our constructions complement the
results on the tensor products of holomorphic and anti-holomorphic discrete series
representations in [R].

For Riemannian symmetric spaces, and also for several non-Riemannian ones,
we have m(π) ≤ 1. Thus in these cases we deduce that π1 ⊗ π2 is multiplicity free.

If Ω is the Siegel upper half plane then G = Sp(2n,R), G is the metaplectic
group and G′/H ′ = O(p+, p−)/[O(p+

1 , p
−
1 )× . . .× O(p+

s , p
−
s )] , where p+ =

∑
p+
i ,
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p− =
∑
p−i . In this case our correspondence coincides with the H ′-spherical part

of the θ-correspondence.
Finally, if Ω is the exceptional tube domain, then G = G is the simply connected

exceptional group E7(−25). If we take s = 2 and p1 = (1, 0), then among the possi-
bilities for G′/H ′ are the various forms of the Cayley projective plane [A, p. 118],
i.e., for p2 = (2, 0), p2 = (0, 2) and p2 = (1, 1), we obtain respectively

F4(−52)/ Spin(9), F4(−20)/ Spin(9) and F4(−20)/ Spin(1, 8).

Note that these symmetric spaces are multiplicity-free (see [V] for the non-Rieman-
nian space F4(−20)/ Spin(1, 8)) and by Theorem 0.4, so is Π = π1 ⊗ π2.

If we take p1 = p2 = (1, 0), then Π is a tensor square of a highest weight
representation π1, and a description of the spectrum of this tensor square is a key
step in the classification of unitarizable highest weight modules in [EHW].

Just as with the θ-correspondence, we expect that our results will have smooth
and global analogues. We shall take up some of these questions in subsequent
papers.

1. Notation and Preliminaries

1.1 Groups and subgroups

Let G be one of the following groups:

• Sp(2n,R) (case I1),
• U(n, n) (case I2),
• O∗(4n) (case I3),
• O(2, j) (case I4),
• E7(−25) (case I5),

and K be the maximal compact subgroup of G. Then Ω = G/K is a symmet-
ric domain of tube type [He, p. 474]. Taking G = U(n, n) or O(2, j) instead of
SU(n, n) or SO(2, j) is not really necessary, but will make some arguments more
straightforward.

The restricted root system for each of the groups listed above is of type Cn,
where n is the real rank of the group G. Let ∆ = {β1, β2, . . . , βn} be the basis
of the restricted root system, enumerated in such a way that the corresponding
Dynkin diagram is

β1◦ β2◦ β3◦ · · ·
βn−2◦

βn−1◦ ⇐=
βn◦ .

There exists a one-to-one correspondence between the set of maximal parabolic
subgroups of G and the set of maximal subsets of ∆. We will be interested in two



16 A. Dvorsky and S. Sahi Sel. math., New ser.

parabolic subgroups of G — the Siegel parabolic of G (this corresponds to the set
∆ \ {βn}) and the maximal parabolic subgroup corresponding to the set ∆ \ {β1}.
We denote the first by P and the second by P ′.

The Levi decomposition of P is P = L · N , where the subgroup N is abelian
(e.g., for G = O(2, j) we have n = 2, L = R∗ ×O(1, j − 1) and N = R1,j−1).

The Langlands decomposition of P ′ is P ′ = M ′AN ′, where the radical N ′ is a
two-step nilpotent group with a one-dimensional center ZN ′, and we can identify it
with the real Heisenberg group of dimension 2m+1. The vector subgroup A is one-
dimensional, i.e., A = R∗. For example, G = E7(−25) gives M ′A = SO(2, 10)× R∗
and N ′ is the Heisenberg group associated with a 32-dimensional real vector space.

The group M ′ splits into a direct product of a compact factor and a noncompact
group, which we denote by G−. The group G− belongs to one of the families
(I1)–(I4), and we can consider its Siegel parabolic P−, the nilradical N− of P−,
etc. In general, all subgroups of G− will be written with a minus as a subscript.

The information about some of the subgroups we defined above is summarized
in the following table.

G N M ′ G− m

Sp(2n,R) Sym(n,R) Sp(2n− 2,R) Sp(2n− 2,R) n− 1

U(n, n) Herm(n,C) U(1)× U(n− 1, n− 1) U(n− 1, n− 1) 2(n− 1)

O∗(4n) Herm(n,H) Sp(1)×O∗(4n− 4) O∗(4n− 4) 4(n− 1)

O(2, j) R1,j−1 SL(2,R)× O(j − 2) SL(2,R) j − 2

E7(−25) Herm(3,O) SO(2, 10) SO(2, 10) 16

1.2. Orbits and representations

The orbits of the natural action of L on n∗ = N∗ are parametrized by pairs of
non-negative integers p+, p− with p+ + p− ≤ n [S, 2.1]. The simplest example of
this parametrization can be observed for G = Sp(2n,R), when the group N can be
identified with the vector space of n×n real symmetric matrices, and an arbitrary
orbit O of L = GL(n,R) on N∗ ' N is defined by the signature of the symmetric
matrix ξ ∈ O. We write p for the pair (p+, p−), and Op for the corresponding
orbit. The rank of the orbit is p+ + p−, which we denote by |p|. If |p| = n, the
orbit Op is open in N∗, otherwise we get small (singular) orbits. By Sp we denote
the stabilizer of ξp ∈ Op in L.

Suppose now |p| < n. Then Op = L/Sp has an L-equivariant measure dµp which
transforms by some positive character δp of L. The main result of [S] associates
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with each nonzero singular orbit Op a unitary irreducible representation πp of G.
Here G = G unless G = Sp(2n,R) or O(2, j) with j odd and G is a two-fold cover
of G in these two cases (for G = Sp(2n,R) we can take G to be a real metaplectic
group).

If H is a subgroup of G, we write H for the inverse image of H in G.
The representation πp acts on the Hilbert space L2(Op, dµp), and actions of the

elements of the maximal parabolic subgroup P can be written in a particularly
simple manner — the action of the reductive part L comes from the action of L on
Op and the unipotent radical N acts by characters

[πp(n)h](ξp) = χξp(n)h(ξp), n ∈ N, ξp ∈ Op
[πp(l)h](ξp) = νp(l)δp(l)−1/2h(l−1ξp), l ∈ L, ξp ∈ Op.

(3)

Here χξp is the unitary character of the vector space N defined by ξp ∈ N∗ and νp
is a unitary character of L (trivial on the identity component of L)1.

2. Tensor products πp1 ⊗ . . .⊗ πps

We pick s singular orbits Op1 , . . . ,Ops such that |p1|+ . . .+ |ps| ≤ n and consider
the tensor product of associated representations

Π =
s⊗
i=1

πpi .

The group L acts on the set O′ def= Op1 × . . . × Ops , and up to a set of measure
zero, O′ is a single L-orbit. Note that the set

O def= Op1 + . . .+Ops =
{
ζ ∈ N∗ | ζ =

s∑
i=1

ζpi , ζpi ∈ Opi
}

also contains a dense L-orbit. The representation Π acts in
⊗s

i=1 L
2(Opi , dµpi),

and we can identify this space with L2(O′, dµ′) where dµ′ is the product measure.
If we fix a generic representative ξ′ = (ξp1 , . . . , ξps) ∈ O′ and set

ξ = ξp1 + . . .+ ξps ∈ O
and δ =

∏s
i=1 δpi , ν =

∏s
i=1 νpi , we have the following formulas for the actions of

Π|P on L2(O′, dµ′)
Π(l0)f(lξ′) = ν(l0)δ(l0)−1/2h(l−1

0 lξ′), l0 ∈ L
Π(n0)f(lξ′) = χlξ(n0)h(lξ′), n0 ∈ N.

(4)

Let now S′ and S be the isotropy subgroups of ξ′ and ξ, respectively, with respect
to the action of L on O′ and O. If |p1| + . . . + |ps| = n, the groups S′ and S are
reductive.

1 In [S] the characters νp and δp are denoted by µ and ν respectively.
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Example. Take G = U(n, n), s = 2 and p1 = (k, 0), p2 = (0, n− k). Then we can
choose

ξp1 =
(
Ik 0
0 0

)
, ξp2 =

(
0 0
0 −In−k

)
and ξ =

(
Ik 0
0 −In−k

)
.

It is easy to see that S = U(k, n − k) and S′ = U(k) × U(n − k). The quotient
S/S′ is a Riemannian symmetric space.

Lemma 2.1. Π|P ' ν ⊗ IndPS′N (1⊗ χξ) (L2-induction). Here ν is a character of
L extended trivially to P .

Proof. We denote the induced representation ν⊗IndPS′N (1⊗χξ) by Π′. Then by the
definition of the induced representation, Π′ acts on the space C of square-summable
functions satisfying a standard invariance condition

C =
{
f : LN → C | f(ps′n) = χξ(n)−1f(p) for p ∈ P, s′ ∈ S′, n ∈ N

}
. (5)

Let |p1| + . . . + |ps| < n (strict inequality). Then the quasi-invariant measure on
the quotient space LN/S′N ' L/S′ is transformed by the character δ =

∏s
i=1 δpi

of L, and we get

Π′(l0)f(ln) = ν(l0)δ(l0)−1/2f(l−1
0 ln)

Π′(n0)f(ln) = f(n−1
0 ln) = f

(
l(l−1n−1

0 ln)
)
.

(6)

We can now define a unitary operator Ψ : L2(O′, dµ′)→ C by setting

[Ψh](ln) = χξ(n)−1h(lξ′).

This operator provides an isometry between L2(O′, dµ′) and C, and it easy to
check that Ψ intertwines the actions Π and Π′. Indeed, for the actions of l0 this is
immediate by inspection of formulas (4) and (6), and for the actions of n0 we get

Π′(n0)[Ψh](ln) = [Ψh]
(
l(l−1n−1

0 ln)
)

= χξ(l−1n−1
0 l)−1χξ(n)−1h(lξ′)

= χξ(n)−1χlξ(n0)h(lξ′) = [ΨΠ(n0)h](ln).

Computations for |p1|+ . . .+ |ps| = n are almost identical. In this case the space
L/S′ possesses an L-invariant measure, the action of l0 ∈ L is given by

Π′(l0)f(ln) = f(l−1
0 ln),

and we set
[Ψh](ln) = χξ(n)−1δ(l)−1/2(lξ′).
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A straightforward computation shows that this operator intertwines the actions of
Π and Π′. �

Denote by γ a S′-quasi-regular representation of S in L2(S/S′). That is(
γ(z)f

)
(x) = f(z−1x) for z ∈ S, x ∈ Y def= S/S′, f ∈ L2(Y ). (7)

Of course, γ = IndSS′ 1, and combining the induction in stages with the fact that
the character χξ of N is SN -fixed, we get

Π|P ' ν⊗ IndPS′N (1⊗χξ) = ν⊗ IndPSN
(

(IndSS′ 1)⊗χξ
)

= ν⊗ IndPSN (γ⊗χξ). (8)

The groups S and S′ are, generally speaking, not reductive (except when |p1| +
. . .+ |ps| = n). As was discussed in [S, 2.1], the Lie algebras s and s′ of S and S′,
respectively, can be written as

s = (l1 + g
′) + u

s
′ = (l1 + h

′) + u ,

where l1, g
′, h′ are some reductive Lie algebras, h′ ⊂ g′ and u is a nilpotent radical

common for both s and s′. Let G′ and H ′ be the corresponding Lie groups.
In particular, X = G′/H ′ is a reductive homogeneous space, and we can consider

an H ′-quasi-regular representation of G′ on L2(X) (denoted by γ′). Then the
representation γ of S given by the formula (7) can be obtained by extending γ′

trivially from G′ to S. Now let

γ′ '
⊕∫

Ĝ′

m(π)π dµ(π)

be a decomposition of a quasi-regular representation γ′ into a direct integral of
unitary irreducible representations of G′, where m : Ĝ′ → Z+ is a multiplicity
function and dµ a Plancherel measure for a symmetric space X . Each irreducible
representation π ∈ Ĝ′ can be extended to an irreducible representation π∨ of S.
This gives

γ '
⊕∫

Ĝ′

m(π)π∨ dµ(π)

and substituting this into (8), we obtain the decomposition of Theorem 0.3

Π|P '
⊕∫

Ĝ′

m(π)Θ(π) dµ(π), (9)
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where Θ(π) = ν ⊗ IndPSN (π∨ ⊗ χξ). Note that representations π present in the
formula (9) (i.e., those with m(π) > 0) are H ′-spherical representations of G′.

Mackey theory guarantees that all representations Θ(π) are unitary irreducible
representations of P and Θ(π) ' Θ(σ) if and only if π ' σ.

The special case s = 2 deserves some special attention. In this situation Π =
πp ⊗ πq, where p = (p+, p−), q = (q+, q−). We will write G′pq, H

′
pq and Xpq for G′,

H ′ and X , respectively. The quotient space Xpq = G′pq/H
′
pq is then a reductive

symmetric space in the sense of [F]. The table below lists these symmetric spaces
for different combinations of G, p and q ( |p|+ |q| ≤ n) (see [A, 16.7] for the detailed
computations in the case of G = E7).

G p q Xpq

Sp(2n,R) p q O(p+ + q+, p− + q−)/[O(p+, p−)×O(q+, q−)]

U(n, n) p q U(p+ + q+, p− + q−)/[U(p+, p−)× U(q+, q−)]

O∗(4n) p q Sp(p+ + q+, p− + q−)/[Sp(p+, p−)× Sp(q+, q−)]

O(2, j) (1, 0) (1, 0) SO(j − 1)/SO(j − 2)

(1, 0) (0, 1) SO0(1, j − 2)/SO(j − 2)

E7(−25) (1, 0) (1, 0) SO(9)/SO(8)

(1, 0) (0, 1) SO0(1, 8)/SO(8)

(1, 0) (2, 0) F4(−52)/ Spin(9)

(1, 0) (0, 2) F4(−20)/ Spin(9)

(1, 0) (1, 1) F4(−20)/ Spin(1, 8)

3. Extending Θ(π) to G

3.1. The N-spectrum

In this section we study low-rank representations of G. For the classical groups
(cases I1, I2, I3 in our list) a complete theory of low-rank representations can be
found in Li’s paper [L2]. We rely heavily on the ideas and methods of this paper.
Our objective here is to extend the low-rank theory of Li so it can be applied to
representations of the groups O(2, j) and E7(−25).

Consider the restriction of the representation Θ(π) = ν⊗ IndPSN (π∨⊗χξ) to N .
This restriction decomposes into a direct integral of unitary characters, and the
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decomposition is determined by a projection-valued measure on N̂ = N∗. This
measure is supported on the set O ⊂ N∗ (an L-orbit of ξ).

Similarly, for any unitary representation τ of G, we can consider its restriction
to the abelian subgroupN and the associated measure µτ on N∗. If µτ is supported
on the single orbit Or ⊂ N∗, we say that τ is of signature r = (r+, r−) and write

signN τ = r.

The number |r| = r+ + r− is the rank of Or. If µτ is supported on one or several
orbits of rank k, we write rankN τ = k.

It will be convenient to set

sign t =
{

(1, 0), t > 0
(0, 1), t < 0.

Remark. For the representations of classical groups, the notion of rank was intro-
duced in [Ho1] and [L2]. Our definition extends it to G = E7(−25). For G = O(2, j)
the definition above differs from the notion of rank in [L2] due to the different
choice of the parabolic subgroup P .

We now take a unitary representation σ of G and consider σ|M ′N ′ . The group
N ′ is a Heisenberg group defined by an exact sequence

1→ ZN ′ → N ′ → R2m → 1,

and the multiplication on N ′ defines a standard skew-symmetric bilinear form on
R2m. The group M ′ acts on N ′ by the automorphisms of N ′, and it also acts
trivially on the center ZN ′. Because of this we can view M ′ as a subgroup of
Sp(2m,R).

Now let ρt be a unique representation of N ′ corresponding in the sense of Stone-
von Neumann theorem to the character χt of ZN ′ ' R, where

χt(z) = exp(2πitz), z ∈ ZN ′.

We can extend ρt to the representation of the semidirect product Sp(2m,R) ·̃N ′
using the corresponding oscillator representation ωt of the metaplectic group
Sp(2m,R)˜. This extension restricts to a representation of a semidirect prod-
uct M ′N ′, and we denote this restriction by ρ̃t.

By the results of [HM] the subspace of ZN ′-fixed vectors is invariant under the
action of σ(G), and without loss of generality we may assume that σ has no ZN ′

–fixed vectors. Then, according to the Mackey theory, σ|M ′N ′ decomposes into
representations of the form κt⊗ ρ̃t, where all κt, t ∈ R∗ are unitary representations
of M ′. We can write

σ|G−N ′ =

⊕∫
R∗

κt ⊗ ρ̃t dt.
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We will now describe the N -spectrum of ρ̃t. It is known that a real vector space N
is endowed with a structure of a simple formally real Jordan algebra with the unit
(denoted by e), and L is the structure group of this Jordan algebra. Then ZN ′ is
a one-dimensional subalgebra of N generated by the primitive idempotent c.

This idempotent determines the Peirce decomposition of N [FK, IV.I]:

N = N(c, 1) +N(c, 1/2) +N(c, 0).

Observe that N(c, 1) = ZN ′, N(c, 1/2) = Rm and N(c, 0) = N−.

Example. Take G = E7(−25). Then

N = Herm(3,O), c =

 1 0 0
0 0 0
0 0 0


and the corresponding Peirce decomposition is

N = Rc+O2 + Herm(2,O).

Hence N(c, 1/2) = O2 = R16 and N(c, 0) = Herm(2,O) = R1,9 and this Jordan
algebra is in fact the nilradical N− of the parabolic subgroup P− = [R∗×SO(1, 9)] ·
R1,9 inside G− = SO(2, 10).

The action of ρ̃t on N(c, 1) and N(c, 1/2) is easy to describe: these spaces lie
inside N ′ and we can model an irreducible representation ρt of N ′ on the Hilbert
space L2(N(c, 1/2)). To distinguish between an element x of N(c, 1/2) and the
corresponding vector from Rm, we shall write x̂ for the latter. Then

ρ̃t(n1c)f(x) = χt(n1)f(x)

= χt(trN [n1c])f(x), n1 ∈ R
ρ̃t(n1/2)f(x) = χt(n̂1/2 · x̂)f(x)

= χt
(1

2
trN [n1/2x]

)
f(x), n1/2 ∈ N(c, 1/2).

(10)

Here trN is the standard trace functional on the Jordan algebra N .
Now take z0 ∈ Sym(m,R) ⊂ Sp(2m,R). The action of the oscillator represen-

tation ωt(z0) on L2(Rm) is given by the formula

ωt(z0)f(x) = χt
(1

2
x̂z0x̂

t
)
f(x).

Observe that x̂z0x̂
t = trSym(m,R)[(e− c)x2z0].
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Recall that G− ⊂ Sp(2m,R) and

N(c, 0) = N− = P− ∩ Sym(m,R).

For n0 ∈ N(c, 0) and x ∈ N(c, 1/2) we have

trSym(m,R)
[
(e− c)x2n0

]
= trN−

[
(e− c)x2n0

]
and

ρ̃t(n0)f(x) = χt
(1

2
trN

[
(e− c)x2n0

])
f(x). (11)

Combining formulas (10) and (11), we can write the formula for ρ̃t(n0), where
n0 = n1c+ n1/2 + 2n0 .

ρ̃t(n0)f(x) = χt
(

trN
([
c+

1
2
x+

1
4

(e− c)x2
]
n0
))
f(x). (12)

We can identify N∗ and N by setting φ(n′)(n′′) = trN (n′n′′) for n, n′ ∈ N . It fol-
lows from the formula (12) that the N -spectrum of ρ̃t is supported on the elements
of the form nt(x), x ∈ N(c, 1/2), where

nt(x) = t
(
c+

1
2
x+

1
4

(e− c)x2
)
.

For an arbitrary element x′ ∈ N(c, 1/2) there exists a special element of the struc-
ture group L, called the Frobenius transformation and denoted by τ(x′). According
to Lemma VI.3.1 of [FK], τ(x′)nt(x) = n′1 + n′1/2 + n′0, where

n′1 = tc

n′1/2 = t
(

2x′c+
1
2
x
)

n′0 = t
(

2(e− c)x′2c+ (e− c)x′x+
1
4

(e− c)x2
)
.

In particular, τ(−x/2)nt(x) = tc.
We can now describe the N -spectrum of κt ⊗ ρ̃t. If the N−-spectrum of κt is

supported on a set O(κt), then the support of the N -spectrum of κt ⊗ ρ̃t consists
of the elements nt(x) + n− where x ∈ N(c, 1/2), n− ∈ O(κt). Then

τ
(
−x

2

) (
nt(x) + n−

)
= tc+ n− .

Suppose now that signN σ = r, where r = (r+, r−). Then signN (κt ⊗ ρ̃t) = r, i.e.,

signN (tc+ n−) = r. (13)

It is easy to see that (13) implies sign t+ signN− n− = r, i.e.,

signN− κt =
{

(r+ − 1, r−), t > 0
(r+, r− − 1), t < 0.

We summarize this discussion in the following
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Lemma 3.1. Let σ be a representation of G, signN σ = r and σ|G− N ′ =
∫ ⊕
R∗
κt⊗

ρ̃t dt. Then for any t ∈ R∗ the N−-spectrum of the representation κt is supported
on a single L−-orbit, and signN− κt = r − sign t.

3.2. Von Neumann algebras

Let τ be a representation of some subgroup H of G. By A(τ,H0) we denote the
von Neumann algebra generated by the operators τ(h), h ∈ H0, where H0 is a
subgroup of H.

To proceed further we need

Lemma 3.2. Assume that A(κt, G−) = A(κt, P−) for all t ∈ R∗. Then

A
( ⊕∫
R∗

κt ⊗ ρ̃t dt ,G−
)
⊆ A

( ⊕∫
R∗

κt ⊗ ρ̃t dt , P−N ′
)
.

Proof. The representation ρt is an irreducible representation of N ′, therefore
A(ρt, N−) is the full algebra of bounded operators on L2(Rm). Consider the al-
gebra A(κt ⊗ ρ̃t, G−). This algebra is generated by operators

κt(g−)⊗ ρ̃t(g−), g− ∈ G−. (14)

All these operators lie inside A(κt ⊗ ρ̃t, P−N ′). Indeed, the algebra A(κt ⊗
ρ̃t, P−N ′) contains the set B of all operators of the form κt(p−) ⊗ a, where a
is an arbitrary bounded operator on L2(Rm) and p− ∈ P−. Combining this fact
with the assumption A(κt, G−) = A(κt, P−), we conclude that the von Neumann
algebra generated by B already contains all operators (14).

Hence A(κt ⊗ ρ̃t, G−) ⊆ A(κt ⊗ ρ̃t, P−N ′) and

A
( ⊕∫
R∗

κt ⊗ ρ̃t dt ,G−
)
⊆
⊕∫
R∗

A(κt ⊗ ρ̃t , G−) dt ⊆
⊕∫
R∗

A(κt ⊗ ρ̃t , P−N ′) dt.

But the representations ρ̃t are irreducible and nonisomorphic for different t, and

⊕∫
R∗

A(κt ⊗ ρ̃t , P−N ′) dt = A
( ⊕∫
R∗

κt ⊗ ρ̃t dt , P−N ′
)
. �

Observe that P−N ′ is a subgroup of P .
The next theorem is an analogue of [L2, 4.3].
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Theorem 3.3. Let σ be a representation of G , signN σ = r and 0 < |r| < n (i.e.,
σ is a low-rank representation of G). Then A(σ,G) = A(σ, P ).

Proof. The groups G− and P together generate G, and it suffices to check that

A(σ,G−) ⊆ A(σ, P ). (15)

But σ|G−N ′ =
∫ ⊕
R∗
κt⊗ ρ̃t dt, and by Lemma 3.2, the assertion (15) follows imme-

diately if we can show that A(κt, G−) = A(κt, P−) for all t ∈ R∗. By Lemma 3.1
all κt are representations of rank |r| − 1 of the group G−, and we can apply the
same line of reasoning to them.

After |r| steps of this process, we reduce the statement of the theorem to the
case of representations of rank 0 for some group G0, where G0 is belongs to one of
the families I1–I4. Any representation τ of rank 0 decomposes over characters of G0
[HM] and it is well known that any character of G0 is determined by its restriction
to the Siegel parabolic P 0 (e.g., [L2, 4.2]. Therefore, A(τ,G0) = A(τ, P 0). �

We now return to the problem of decomposing representation Π =
⊗s

i=1 πpi .
The restriction of this representation on P is given by (9), and for any Θ(π) =
ν ⊗ IndPSN (π∨ ⊗ χξ) in the decomposition (9)

signN Θ(π) = signN ξ =
s∑
i=1

pi .

Therefore Π can be decomposed over the irreducible representations of G of signa-
ture

∑s
i=1 pi.

Assume
∑s
i=1 |pi| < n. Then by Theorem 3.3, any two non-isomorphic ir-

reducible representation from the spectrum of Π restrict to non-isomorphic irre-
ducible representations of P . Therefore the P -decomposition (9) gives rise to a
G-decomposition

Π '
⊕∫

Ĝ′

m(π)θ(π) dµ(π), (16)

where θ(π) is defined for almost every π (with respect to dµ) as a unique irreducible
representation of G determined by the condition θ(π)|P = ν ⊗ IndPSN(π∨ ⊗ χξ).
Obviously θ(π) ' θ(σ) if and only if π ' σ.

4. Representations of maximal rank

The statement of Theorem 3.3 is certainly false for the representations of maximal
possible rank, i.e., when signN σ = r and |r| = n. Nevertheless, a G-decomposition
(16) can be constructed even when

∑s
i=1 |pi| = n.
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Consider σ = σ1 ⊗ σ2, where σ1 and σ2 are representations of G, signN σ1 =

r1 = (r+, r−), |r1| = n− 1 and signN σ2 = (1, 0). Then σ1|M ′N ′ =
∫ ⊕
R∗
κt ⊗ ρ̃t dt

and σ2|M ′N ′ =
∫ ⊕
R∗+
κ′u ⊗ ρ̃u du, and

σ|M ′N ′ =

⊕∫∫
R∗×R∗+

(κt ⊗ κ′u)⊗ (ρ̃t ⊗ ρ̃u) dt du. (17)

For t + u 6= 0 we have (ρ̃t ⊗ ρ̃u)|N ′ = ρt ⊗ ρu ' 1 ⊗ ρt+u, where 1 is a trivial
representation of N ′ on L2(Rm).

(ρ̃t ⊗ ρ̃u)|M ′ = ωt ⊗ ωu ' ω′t,u ⊗ ω′′t,u where

ω′′t,u =
{
ω+, t+ u > 0
ω−, t+ u < 0

and

ω′t,u =
{
ω+, tu/(t+ u) > 0
ω−, tu/(t+ u) < 0.

Here ω+ and ω− are the restrictions of two nonisomorphic oscillator representations
of Sp(2m,R)˜ to M

′
.

Then ρ̃t⊗ ρ̃u ' τt,u⊗ ρ̃t+u, where τt,u(N ′) acts trivially on L2(Rm) and τt,u(M
′
)

acts by ω′t,u. The set t + u = 0 has measure 0 in R∗ × R∗ and after a change of
variables t+ u = v the decomposition (17) becomes

σ|M ′N ′ =

⊕∫∫
D

(κt ⊗ κ′v−t ⊗ τt,v−t)⊗ ρ̃v dt dv,

where D = {(t, v) | t 6= 0, v 6= 0, v > t}.

If we set λv =
∫ ⊕

(−∞,v)
κt ⊗ κ′v−t ⊗ τt,v−t dt, the preceding formula can be

rewritten as

σ|M ′N ′ =

⊕∫
R∗

λv ⊗ ρ̃v dv. (18)

By Lemma 3.1 all representations κt have signature r1− sign t, and all κ′v−t are
of rank 0, i.e., decomposable over characters. Therefore

λv|M′ =


κ−v ⊗ ω+, signN− κ

−
v = (r+, r− − 1) if v < 0

(κ−v ⊗ ω−)⊕ (κ+
v ⊗ ω+),

signN− κ
−
v = (r+, r− − 1),

signN− κ
+
v = (r+ − 1, r−) if v > 0.

(19)
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Remark. If the signature r is semi-definite (i.e. r = (|r| , 0) or (0, |r|)), some of
the signatures in the formula above will involve negative numbers, which is of
course impossible. To simplify notation, we agree that in this case corresponding
summands are simply absent from the decomposition (18).

Lemma 4.1. Let σ = σ1⊗σ2, where σ1 and σ2 are representations of G = O(2, j),
signN σ1 = r, |r| = 1 and signN σ2 = (1, 0). Then A(σ,G) = A(σ, P ).

Proof. Consider P 1 = P− × O(j − 2) – a parabolic subgroup of M ′ = SL(2) ×
O(j − 2). It suffices to prove that for all v

A(λv ,M
′
) = A(λv , P 1).

Indeed, this fact combined with formula (18) and Lemma 3.2 gives A(σ,M
′
) ⊆

A(σ, P ), and the statement of the lemma follows.
Analysis of (19) shows that λv|M ′ = χv ⊗ω, where χv decomposes over charac-

ters and ω is an oscillator representation restricted toM ′. Without loss of generality
we may take ω = ω+. Two factors of M ′ form a dual reductive pair inside Sp(2(j−
2),R) and the spectrum of ω+ is very well known: ω+ =

⊕
i η

(i)
1 ⊗ η

(i)
2 , where

η
(i)
1 and η

(i)
2 are irreducible highest weight representations of SL(2) and O(j − 2)

respectively, and each η(i)
1 and η(i)

2 occurs only once in the decomposition. Observe
that each η

(i)
1 |P− is irreducible. Therefore A(η(i)

1 ⊗ η
(i)
2 ,M

′
) = A(η(i)

1 ⊗ η
(i)
2 , P 1),

and A(ω,M
′
) = A(ω, P 1). Similarly, A(χv ⊗ ω,M

′
) = A(χv ⊗ ω, P 1). Hence any

irreducible component of χv ⊗ ω is irreducible when restricted to P 1 and uniquely
determined by this restriction, and A(χv ⊗ ω,M

′
) = A(χv ⊗ ω, P 1). �

Remark. It is easy to see (by inspection of the above argument) that the state-
ment of the lemma remains true if we replace σ = σ1⊗σ2 with σ =

⊕k
i=1 σ

(i)
1 ⊗σ

(i)
2 ,

where signN σ
(i)
1 = r and signN σ

(i)
2 = (1, 0), 1 ≤ i ≤ k. We can also replace

G = O(2, j) with SO(2, j).

Lemma 4.2. Let σ = σ1⊗σ2, where σ1 and σ2 are representations of G = E7(−25),
signN σ1 = r, |r| = 2 and signN σ2 = (1, 0). Then A(σ,G) = A(σ, P ).

Proof. In this case M ′ = G− = SO(2, 10). Once again, it suffices to check that for
all v ∈ R∗

A(λv , G−) = A(λv, P−). (20)
From (19) we see that λv is either a tensor product of two representations of

rank 1 (in this case the assertion of (20) follows immediately from Lemma 4.1) or

λv = (κ−v ⊗ ω−)⊕ (κ+
v ⊗ ω+),

where signN− κ
−
v = (1, 0), signN− κ

+
v = (0, 1). This can occur only when r =

(1, 1), v > 0. But signN− ω− = (0, 1), signN− ω+ = (1, 0) and we find ourselves in a
situation described in the remark to Lemma 4.1.

Therefore, (20) holds for all v. �
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Corollary 4.3. Let σ = πp1 ⊗ πp2 ⊗ πp3 be a representation of G = E7(−25),
|p1| = 1, |p2| = 1, p3 = (1, 0). Then A(σ,G) = A(σ, P ).

Proof. Set σ1 = πp1 ⊗ πp2 , σ2 = πp3 . Then signN σ1 = p1 + p2, signN σ2 = (1, 0)
and the lemma above can be applied. �

We now return to our study of the tensor product Π =
⊗s

i=1 πpi ,
∑s
i=1 |pi| ≤ n.

Theorem 4.4. A(Π, G) = A(Π, P ).

Proof. If
∑s
i=1 |pi| < n, the statement of this theorem follows from Theorem 3.3.

Hence we can restrict our attention to the case
∑s
i=1 |pi| = n.

If G = O(2, j), the only possible case is s = 2, and we may always assume p2 =
(1, 0) and apply Lemma 4.1. Similarly, for G = E7(−25) we can take ps = (1, 0),
and the theorem follows from Lemma 4.2 for s = 2 and Corollary 4.3 for s = 3.

Finally, in the classical cases (I1–I3) the statement follows immediately from
[L2, 4.7–4.8]. Indeed, for these groups each of the representations πpi appears in
the Howe duality correspondence for an appropriate stable range dual pair (G′i, G)
and all irreducible representations from the spectrum of Π appear in the duality
correspondence for the pair (G′, G), which is still in the stable range. Therefore any
irreducible representation from the spectrum of Π is irreducible when restricted to
P and uniquely determined by this restriction, and A(Π, G) = A(Π, P ). �

Therefore the P -decomposition (9) gives rise to a G-decomposition of Π with
respect to the same measure dµ and multiplicity function m(π)

Π '
⊕∫

Ĝ′

m(π)θ(π) dµ(π). (21)

Comparing (9) and (21) we see that θ(π) is a unitary irreducible representation ofG
which can be defined (for almost every π with respect to dµ) as a unique irreducible
representation from the spectrum of Π satisfying the condition θ(π)|P = Θ(π),
where Θ(π) = ν ⊗ IndPSN (π∨ ⊗ χξ).

Theorem 0.4 is thus proved.

References

[A] J.F. Adams. Lectures on exceptional Lie groups. University of Chicago Press, Chicago,
1996.

[EHW] T. Enright, R. Howe and N. Wallach. A classification of unitary highest weight modules.
Proceedings of the University of Utah Conference 1982, Progress in Math., vol. 40.
Birkhäuser, Boston, 1983, pp. 97–143.

[FK] J. Faraut and A. Koranyi. Analysis on symmetric cones. Clarendon Press, Oxford, 1994.
[F] M. Flensted-Jensen. Analysis on non-Riemannian symmetric spaces. Regional confer-

ence series in math., no. 61, AMS. Providence, 1986.



Vol. 4 (1998) Tensor products of singular representations 29

[G1] S. Gelbart. Holomorphic discrete series for the real symplectic group. Invent. Math. 19
(1973), 49–58.

[G2] S. Gelbart. On theta-series liftings for unitary groups. CRM Proceedings and Lecture
Notes., vol. 1, AMS. Providence, 1993, pp. 129–173.

[He] S. Helgason. Geometric analysis on symmetric spaces. AMS. Providence, 1994.
[Ho1] R. Howe. A notion of rank for unitary representations of classical groups. C.I.M.E.

Summer School on Harmonic analysis. Cortona, 1980.
[Ho2] R. Howe. Transcending classical invariant theory. J. of the Amer. Math. Soc. 2 (1989),

535–552.
[HM] R. Howe and C. Moore. Asymptotic properties of unitary representations. J. Func. Anal.

32 (1979), 72–96.
[KV] M. Kashiwara and M. Vergne. On the Segal-Shale-Weil representations and harmonic

polynomials. Invent. Math. 44 (1978), 1–47.
[L1] J.-S. Li. Singular unitary representations of classical groups. Invent. Math. 97 (1989),

237–255.
[L2] J.-S. Li. On the classification of irreducible low rank unitary representations of classical

groups. Compositio Math. 71 (1989), 29–48.
[P] D. Prasad. Weil representation, Howe duality and the theta correspondence. CRM Pro-

ceedings and Lecture Notes., vol. 1, AMS. Providence, 1993, pp. 105–127.
[R] J. Repka. Tensor products of holomorphic discrete series representations. Can. J. Math.

31 (1979), 836–844.
[S] S. Sahi. Explicit Hilbert spaces for certain unipotent representations. Invent. Math. 110

(1992), 409–418.
[V] G. Van Dijk. On a class of generalized Gelfand pairs. Math. Z. 193 (1986), 581–593.
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