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THE BINOMIAL FORMULA FOR NONSYMMETRIC
MACDONALD POLYNOMIALS

SIDDHARTHA SAHI

1. Introduction. The q-binomial theorem [GR] is essentially the expansion
of (x- 1)(x- q)... (x- qk-1) in terms of the monomials xd. In a recent paper
[Ok], Okounkov has proved a beautiful multivariate generalization of this in
the context of symmetric Macdonald polynomials [M1]. These polynomials
have nonsymmetric counterparts [M2] that are of substantial interest; in this
paper, we establish nonsymmetric analogues of Okounkov’s results.
An integral vector v 7zn is called "dominant" if Vl > > Vn; it is called a

"composition" if vi > 0 for all i. To avoid ambiguity, we reserve the letters u, v
for integral vectors, , fl, 7 for compositions, and 2,/ for "partitions" (dominant
compositions).
We write Iol for Vl +... + v, and denote by wv the (unique) shortest permuta-

tion in the symmetric group Sn such that v+ w(v) is dominant. Let IF be the
field (q,t) where q,t are indeterminates. We write z (1, t-1,...,t-n+) and
define (q, t) in IF by

fi qV’ (wo’c) i.

Inhomogeneous analogues of nonsymmetric Macdonald polynomials were
introduced in [Kn] and [$3]. They form an IF-basis for IF[x] IF[x,..., x], and
are defined as follows.

Definition. G G(x; q, t) is the unique polynomial of degree < in IF[x]
such that

(1) the coefficient of x x1... x in G is 1;
(2) G vanishes at x fl, for all compositions fl such that I/ 1 I 1.
As shown in Theorem 3.9 of [Kn], the top homogeneous part of G is the

nonsymmetric Macdonald polynomial E for the root system An- (see [M2]
and [C]). Moreover, by Theorem 4.5 of [Kn], we have G(fl) 0 unless "

_
ft."

Here
___

fl means that if we write w w#w1, then i < flw(i) if i< w(i) and
Oi w(i) if i> w(i).

In this paper, we obtain several new results about the polynomials G. Our
first result is a formula for the special value G(aO) G(az) IF[a], where a is
an indeterminate. This can be described in the following manner. We identify
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with the "diagram" consisting of points (i,j) 7Z2 with 1 < < n and 1 < j < i.
For s (i,j) , we define the arm, leo, coarm, and cole9 of s by

a(s) i -j, l(s) # (k > ilj < k < i} + # (k < ilj < k + l <

a’(s) =j- 1, l(s) {k > il > } + {k < il }.

THEOREM 1.1. We have

(tl-n qa’(s)+l tl-l’(s))Ga(az) k i ---qt-(s)- seaI-[(atl’(s) qa’(s)).

Let Wo be the longest element of S, (which interchanges each with n- + 1),
and put /=-Wofl and fl-1 =fl(q_l,t_x)= (fl-l,...,fl-). Then we have the
following crucial "reciprocity" result.

THEOREM 1.2. There is a (unique) polynomial O of degree
(q, t, a)[x] such that O(f1-1) G(a)/G(az) for all ft.

We now introduce the following variants of G, which also form a basis for

t) is the unique polynomial in IF[x] such thatDefinition. G G(x, q,
(1) Gt and G have the same top-degree terms, that is, E;
(2) G’ vanishes at x =/ for all fl with
The existence of G’ can be proved along the same lines as that of G (see [Kn,

Theorem 2.3] and [$3, Theorem 4.3]). One verifies that polynomials of degree
<d are uniquely determined by their values at x-/ for Jill < d. Hence the
lower-degree terms of G’ are determined by (2).

Definition. The "nonsymmetric (q, t)-binomial coefficients" are defined by

a] G/() G((q, t); q, t)
fl q,t G(fl) G(fl(q, t); q, t)

Our main result is the following relationship between G and %.
THEOREM 1.3. We have

G(ax)
=/,j a

G, a’c)
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COROLLARY 1.5.

G (x)
G (O) [ ]l/q,1/tG (O)

We have

The corollaries follow from Theorem 1.3 by: (1) replacing x by a-ix and
letting a 0 and (2) letting a . For n 1, Corollary 1.4 is essentially the
q-binomial theorem.

If we put t qr and let q 1, then E(x;r)= limq_l E(x; q, qr) is the non-
symmetric Jack polynomial (see [Op]). To discuss this limiting case, we define

(0,- 1,...,-n + 1), p r, and (r) + wp.

Definition. G(x; r) is the unique polynomial of degree < Il in (r)[x] such
that

(1) the coefficient of x x1.. -x, in G(x; r) is 1;
(2) G(x;r) vanishes at x=fl(r) for all compositions fl - such that

I 1.

Definition. The "nonsymmetric r-binomial coefficients" are

Definition. G’(x; r) is the unique polynomial in t(r)[x] such that
(1) G’(x; r) and G(x; r) have the same top-degree terms;
(2) G’(x; r) vanishes at x =/(r) -Wofl(r) for all fl with I/1 < I1.
Theorems 1.1-1.3 have analogues in this setting.
If a is a scalar and x is a vector, write a + x for (a + Xl,..., a + Xn).

THEOREM 1.6. We have

(a’(s) + 1 rl’(s) + n)G(a + p; r) \ -(s) 1Sr- + s(a a’(s) + rl’(s)).

THEOREM 1.7. There is a (unique) polynomial O(x;r) of degree < in

(a, r)[x] such that we have O(fl(r); r) G#(a + (r); r)/G#(a + p; r) for all ft.
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THEOREM 1.8. We have

G(a + p; r) G#(a + p; r)

Since i(r)= limq-l(i(q,qr) -1)/(q-1) as in [Kn, Theorem 6.2], we get
G(x;r) limq_lG(1 + (q- 1)x;q, qr)/(q- 1) Il. It follows that the top terms
of G(x; r) and G’(x; r) are E(x; r), and that

[]=lim[] =lim[]q-+l q,qr q-+l I/q, 1/q

So setting x ax and letting a-+ m in Theorem 1.8, we get the following
corollary.

COROLLARY 1.9. We have

Ea(1 + x; r)
E(1; r) E#(1;r)

It seems to be difficult to deduce Theorems 1.6-1.8 directly from Theorems
1.1-1.3 by a limiting procedure. However, the proofs in the (q,t)-case can be
modified to make them work in this setting.
We now describe some new phenomena in the limiting case. Write si for the

transposition (i + 1), which acts on (a)[x] by permuting xi and Xi+l, and let

r
ai si + (1 si).

X Xi+

Then, as observed in [Kn, Corollary 6.5], the map tr: si tri extends to a repre-
sentation of Sn.
THEOREM 1.10. We have G’(x;r) (-1)lltr(Wo)WoG(-x (n- 1)r;r).
Using this and writing G+(x; r) "= (- 1)11G(-x (n 1)r; r), we get the

following corollary.

COROLLARY 1.1 l. We have

tr(wo)G(a + x; r)
G(a + p; r)

U]

As mentioned earlier, the symmetric analogues of Theorems 1.1-1.3 have been
established in [Ok]. In the case of symmetric Jack polynomials, expansions
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in the form of Corollary 1.9 were first considered by Bingham [B] (r 1/2), and
Lascoux [Lc] (r 1), and, in general, by Lassalle [LS] and Kaneko [Ka]. The
analogues of Theorems 1.6, 1.7, and Corollary 1.9 were obtained by Olshanski
and Okounkov in [O1], [OO1], and [002]; the analogues of Theorems 1.8 and
1.10 seem not to have been considered by them. Since these follow easily by our
techniques, we formulate and prove them in Theorems 6.3 and 6.2.
While our proof follows the same general outline as Okounkov’s argument,

there are several differences. First, a decisive role is played by the affine Hecke
algebra and Cherednik operators. The Hecke recursions satisfied by the G
actually yield a simplification of part of the argument. On the other hand, there
are some subtleties in the nonsymmetric case, as exhibited by the definition of

Note. In the case of the Jack limit, the binomial coefficients have been
recently (and independently) introduced in [BF]. The authors use Corollary
1.9 as the "definition" and deduce Corollary 6.6 as a consequence.

2. Preliminaries. We start by recalling certain basic properties of the
G(x; q, t) (see [Kn] and [$3]).
The main result of [Kn, Theorem 3.6] is that the G satisfy the eigenequations

for the "inhomogeneous Cherednik operators" defined by

In turn, the operators (I) and Hi are defined by

f(xl,... ,xn) (Xn t-n+l)f(Xn/q, xl,..., Xn-1),

Hi tsi- (1 t) xi (1 si).
Xi Xi+

The Hi’s satisfy the braid relations and the identity (Hi- t)(Hi + 1)= 0 and
generate a representation of the Iwahori-Hecke algebra of Sn on IF[x].

Next, write v# (Vn 1, Vl,..., vn-1); let a be an indeterminate.

LEMMA 2.1. We have
(1) f(af) (an t-n+X)f(a-7);
(2) Hif(a) ((t- 1)fi)/(i i+l)f(a) + (i ti+l)/(fi- i+l)f(av).

This is proved just as in [Kn, Lemmas 2.1, 3.1]. The main point in (2) is that
for v n, sir v i tf)i+l 0 and sir :/: v si si-V.
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LEMMA 2.2. (1) If an > O, then G qn-l@G.
(2) If ai > i+1, then G (Hi + (1 t)d-)Gs,a where d (1
This is essentially in [Kn] and [$3]. Here is a sketch of the argument: Evi-

dently the right sides of (1) and (2) have degree < I 1, and by using Lemma 2.1,
one verifies the vanishing conditions. It remains only to check that the coefficient
of x is 1. This is obvious for (1), while for (2) one has to use the triangularity of
Ei (Lemma 3.10 of [Kn]).

In connection with Theorem 1.1, we define scalars da(q,t)
I-Is(1-qa(s)+tl(s)+l), e(q,t)=I-[s(tl-n-qa’(s)+lt-l’(s)), and b(a;q,t)=
i-ise(atl’(s) qa’(s)).
L.MMA 2.3. (1) If an > O, then d/d 1- tnEn, e/e -- ten and

(o).
(2) Ifi > i+1, then da ((1 i/Ei+)/(1 tEi/Ei+l))ds,a.
(3) ew e and ew for all w in S=.
The lemma can be proved in a manner very similar to Lemmas 4.1 and 4.2

in [$2]. To.illustrate the argument, we sketch the proof of e/e 1-n ten;
other proofs are similar. It follows from the definition of E that Ei q’ t-k’, where
ki # {k < Ok OQ} ,-I- # {k > Ok >
The diagram of is obtained from # by adding a point to the end of the

first row and moving this row to the last place. The new point s (n, an)e
has a’(s) , 1 and l’(s) # {k < n lk > } k., while coarms and colegs
of other points are unchanged. Thus e/e--tl-n-qa’(s)+lt1-l’(s) --t1-n-

q"tl-k" 1-n ten.
We also need limit versions of these results, which are proved similarly. First,

by [Kn, Theorem 6.6], we know that the G(x; r) satisfy the eigenequations

iG(x; r)

where the "limit" Cherednik operators are defined by

Here, ai si + r(xi- xi+)-1(1 si) is as in the previous section, and

f(x) (xn + (n 1)r)f(Xn 1, X1,..., Xn-1).

LEMMA 2.4. We have
(1) ef(a + f) (a + fn + nr- r)f(a + v# );
(2) aif(a + f)) (r/(i fi+l))f(a + f) + ((fi fi+l r)/(fi fi+l))f(a + v).
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LEMMA 2.5. (1) Ifn > 0, then G G.
(2) If o > 0i+1, then G (tri + rd-1)Gs,, where d 8i- ti+l. [-’]

In connection with Theorem 1.6, we define scalars d(r)
s(a(s) + 1 + rl(s) + r), e(r) s(a’(s) + 1 rl’(s) + rn), and (a; r)
Hs(a- a’(s) + rl’(s)).

LEMMA 2.6. (1) Ifn > O, then d(r)/d, (r) rn + n(r) e(r)/ea, (r).
(2) If i > i+1, then d(r) (d/(d + r)) d,(r), where d i +.
(3) Let ewe(r) e(r) and Cw Ca for all w in Sn.

We now briefly discuss the symmetric case.

Definition. Rx(x;q,t) is the unique symmetric polynomial of degree 121
that vanishes at x for partitions # 2, Il 21; it is normalized so that the
coefficient of xx is 1.

Definition. R(x; r) is the unique symmetric polynomial of degree < I1 that
vanishes at x =/7(r) for partitions/ 2, I/1 < 121; it is normalized so that the
coefficient of x is 1.

The existence and uniqueness of R(x; q, t) was proved in [Kn] and [$2], as
was the fact that its top term is the Macdonald polynomial P(q, t). In the case
of R,(x; r), these results were established in IS1] and [KS].
As in [$3, Theorem 4.6] and [Kn, Corollary 2.6], we have the following

lemmas.

LEMMA 2.7. Let V be the IF-span of {E(x; q, t)I+ 2}. Then V is a module
for the Hecke algebra ’, and V IFR,z(x; q, t).
L.MMA 2.8. Let V(r) be the (r)-span of {Ea(x; r)lot+ 2}. Then V(r) is a

modulefor tr(Sn), and V(r)(s") (r)gx(x; r).
Finally, for compatibility of notation between [Kn], [Ok], and [$3], we point

out that
(1) [Kn] uses Px for R, Px for Px, E for E, and E for G;
(2) [Ok] uses P*(x) for the "(shifted)" polynomial Rx(xz) =R,(Xl,X2t-1,...,

Xntl-n) which vanishes at (q,... ,q) and is symmetric in the variables
xit-i.

(3) [$3] uses Rx(x; q, t) to denote the polynomial t-(n-1)lXiRx(xtn-t; q-l, t-),
which is symmetric and vanishes at the points x= (q-#lt-n+l,...,
q-’n-’t-l,q-#"); its top term is P(x;q-l,t-l), which equals Px(x;q,t) by
[M1].

3. Evaluation.
1.1 and 1.6.

In this section, we prove the evaluation formulas, Theorems

LEMMA 3.1. For all w Sn, we have dw(q, t)Gwa(az; q, t) da(q, t)Ga(az; q, t).
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Proof. It suffices to verify this for w si, and we may also assume that
oi > (Zi+l.

Since z 0, substituting v 0 in Lcmma 2.1 (2), wc get (Hif)(az) tf(az) for
all functions f. Combining this with Lcmma 2.2 (2), we get

G(az) (t + (1 t)d-)Gs(az) 1 ti/i+l Gs,(az).
1 i/i+l

The result now follows from Lemma 2.3 (2). ]

Theorem 1.1 states that dG(az)= e(az), and we first establish this for

LEMMA 3.2. We have

d.G.(O) e(O) e II(-qa’sl).

Proof. The case 0 is trivial, and we proceed by induction on I1 assum-
ing 0. By Lemma 3.1 and Lemma 2.3 (3), both sides are unchanged if we
permute , so we may assume that CZn > 0 and that d, G, (0) e (0). Thus
it suffices to prove

G(O) (e ) (d ( (O)
G(O)- \ d J \,(O)J"

The left-hand side can be computed by combining Lemmas 2.1 (1) and 2.2 (1),
and the right-hand side can be computed by Lemma 2.3 (1). In each case, we get
_q- tl-n. [--’i

We now deduce Theorem 1.1 from the symmetric case (see [Ok]).

Proof of Theorem 1.1. If 2 is a partition, then, by [Ok, formula (1.9)],
R(az) is an IF-multiple of (a). Next, if is a composition such that + 2,
then by Lcmma 2.7, there are some coefficients Cw lF such that R(x)-
-wS. cwdwGw(X). Evaluating at x-az and using Lemma 3.1, we get
R,(az)- (’ cw)dG(az). It follows that d(q,t)G(az) is an IF-multiple of
,(a) (a).

Setting a 0 and using Lemma 3.2, we see that this multiple is e(q, t), and
Theorem 1.1 follows. E]

Proof of Theorem 1.6. Arguing as in Lemma 3.1, we deduce that
dw(r)Gw(a+p;r) d(r)G(a+p;r). Next, by [OO1] formula (2.3),
R(a +p;r) is a (r) -multiple of (a;r). Arguing as before, we conclude that
d(r)G(a + p; r) is a (r)-multiple of (a; r).

Letting a c, we see that the multiple is d(r)E(1; r), which equals e(r) by
Theorem 1.3 of [$2]. The result follows. IS]
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4. Reciprocity. In this section, we prove Theorems 1.2 and 1.7.

Proofof Theorem 1.2. Write IK IF(a) (q, t, a). Forf in lK[x], we have

Eif(a) (a)i)-lf(a)) + (ai)-lHi Hn-I@HI Hi-lf(a).

Since Iv Ivl- 1 and Isvl Ivl, it follows from Lemma 2.1 that the second
term on the right-hand side is a combination off(aft) with lul- Ivl- 1, where
the coefficients do not depend on f. Thus if p is a polynomial of degree d and
we write p(E) p(E1,... ,E,), then p(E)f(az) p(E)f(a-6) _,l#l<lcp(fl)f(a),
with coefficients Cp([3) independent off.

Let be the space of polynomials in IK[x] of degree < d, and let St be the set
of compositions fl in Z_ with I/1 < d. Then p-- cp is a ]K-linear map from to
]KY, and we claim that this map is bijective.

Since the spaces have the same dimension, it suffices to check injectivity. If
cp _=_0, then p(E)f(az)= 0 for all f. In particular, setting f G#, we obtain
p(fl )G#(az) 0. By Theorem 1.1, G#(az) v O, and it follows that p vanishes at
the points fi-1 (q-1, -1) for all fl, and hence p 0, proving injectivity.
Now fix 0 with I1 d, and let O be the polynomial in whose image under

p--Cp is the delta function at in IK. Then O has degree < I1 and satisfies
O(E)f(az) =f(a) for all f. Setting f G, we get O(fl )G#(a) G#(a). I-]

Proof of_Theorem 1.7. This is proved similarly by using the limit Cherednik
operators Ei and Lemma 2.4. [-]

5. The binomial formula. We now prove Theorems 1.3 and 1.8.

Proof of Theorem 1.3.
such that

Since the G form a basis for lK[x], there exist b# e ]K

(*) G(az) #:11<11

Substituting x and using Theorem 1.2, we get O),(-1) _afl bflotGt[3()
Let G be the (infinite) matrix whose entries are gr# G(). By Theorem 4.2 in

[$3], polynomials of degree < d are determined by their values at the points
{" I1 < d). It follows that G has an inverse H, and we get b# Y’r h#rOr(-l).
Since G()= 0 for I1 < I/1, it follows that G and n are block triangular.
Thus h#r =0 for I1 > I1, and we deduce that b# b#(-), where b :=

-’:11<1#1 hO is a polynomial of degree < I/1.
The top-degree term on the left-hand side of (.) is a multiple of E, and so by

the definition of G’ we obtain that b# 0 for I1 < I/1, . Thus b#(-) 0
for I1 < I1, /, and since - (q-, t-l), it follows that b#(x) is a multiple
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of G/(x; q-l, t-l). In other words, there are scalars c# in lK such that

Comparing the top-degree terms, we get c all/G(az), and the result follows.

Proofof Theorem 1.8. The proof proceeds similarly using Theorem 1.7.

6. More on the Jack limit. We now prove Theorem 1.10 and the symmetric
versions of Theorems 1.8 and 1.10. Since the (q, t)-case is not considered in this
section, we often~ suppress r to simplify the notation; for example, we write G(x)
for G(x; r), , for fl(r), and so on.
We start with a simple, but crucial, lemma.

LEMMA 6.1. We have
(1) W_o# WoW#Wo;
(2) -Wo + (n 1)r.

Proof For w in Sn, we have (WoWWo)-(-Wofl)= (-Wo)(w-lfl), which is
dominant if and only if w-fl is dominant. Since conjugation by Wo preserves
length, p_art (1) follows.
Now fl =-Wofl =-Wofl +.W-wo#p =-wofl + wow#wop by part (1). Also, since

Wop -(n 1)r p, we get fl -wo(fl + (n 1)r + w#p) -Wo(fl + (n 1)r).

Proof of Theorem 1.10. For any polynomial f, wf and a(w)f have the same
top terms. So, since w 1, the top term on the right-hand side of Theorem 1.10
is (-1)llwE(-x) E(x). It remains only to show that the right-hand side of
Theorem 1.10 b_elongs to the space V consisting of polynomials that vanish at
the points x fl, I/1 < I1,

Putting a 0 and v fl in Lemma 2.5 (2), we deduce that V is a-invariant,
and so it suffices to prove that f woG(-x- (n- 1)r) e V. But, using Lemma
6.1, we get

f() woG(-- (n- 1)r) G(-Wo- (n- 1)r) G(fl),

which vanishes for I/ l < by the definition of G. [--1

We now turn to the symmetric versions of Theorems 1.8 and 1.10. As in
[OO1], we define the "symmetric r-binomial coefficients" by

/ R(fi(r);r)"
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The main result of [OO1] is the generalized binomial formula

(**) P4(l + x;r) (2) P,(x;r)
Pz(1;r) It Pa(1;r)"/t___2
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For the inhomogeneous analogue of this result, we define the following.

Definition. R’(x; r) is the unique symmetric polynomial in (r)[x] such that
(1) R’(x; r) and R4(x; r) have the same top-degree terms;
(2) R’(x; r) vanishes at x =/(r) -Wola(r) for all/a with Il < I’1.
Then we have the following theorem.

6.2. THEOREM. We have R’ (x; r) (- 1)141R(_x (n 1)r; r).

Proof. The two sides have the same top-degree terms, and it suffices to prove
that the right-hand side vanishes for x =/2 if I1 < IAI. By symmetry, we may
consider instead x =Woft. Substituting this and using Lemma 6.1, the right-hand
side becomes (-1) 141R4(fi; r), which vanishes by the definition of

THEOREM 6.3. We have

R4(a + x; r) (2) R(x; r)
R4(a + p;r) It R(a + p;r)

la _4

We deduce Theorem 6.3 from Theorem 1.8 by symmetrization. Write if’ for
the operator

1

wSn

acting on (r)[x].
LEMMA 6.4. if’ maps polynomials to symmetric polynomials.

Proof. For all i, we have tri ,wSn a(siw) 6e. So iff is a polynomial in
the image of 6e, then (1 tri)f 0. Rewriting this, we get

Xi Xi+l’ (1 si)f O.

Hence (1 si)f 0 for all i, which implies thatf is symmetric.

LEMMA 6.5. Let be any composition with + 2; then
(1) (6aG(a + x))/(G(a + p)) (R4(a + x))/(R4(a + p));
(2) (6VG’(x))/(G(a / p)) (R’4(x))/(R4(a / p)).

E3
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Proof If Jill < [l and fl+ q: +, then Lemma 2.4 implies that, for all w in Sn,
the polynomial a(w)G(x) vanishes at x ft. This means that f 6eG(a + x)
vanishes at/7- a for all partitions/z satisfying I/z[ < [2[,/z q: 2. Since f is sym-
metric and of the right degree, we conclude thatf is a multiple of Rx(a + x). To
determine the multiple, we merely evaluate both sides of (1) at x p and use the
fact that r(w)G(a + p)= G(a + p) (which follows from Lemma 2.4 (2)). This
proves (1).
For (2), the same argument proves that 6eG’(x) vanishes at/7 for < I l. To

finish the proof, it suffices to prove that the top terms of the two sides are equal.
But these are also the top terms of (1) and hence are equal. [-1

Proof of Theorem 6.3. Fix with += 2, and apply 6a to both sides of
Theorem 1.8. By Lemma 6.5, we get

R(a + x;r)
k,

R’(x;r)
with k, [] (r).g(a + p; r) R(a + p; r) fl_, #+=

but this follows by puttingTo conclude, we need to establish that k, ,
x ax in the above, letting a , and using (**). [:]

COrtOLLV 6.6. For each satisfyin[t + 2, we have

ffl-_./Z

[BF]

[B]

[c]

[GR]

[Ka]

[Kn]

[KS]

[Lc]

[Ls]

[M1]
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