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1. Introduction

The Jack polynomials J�(x; �) form a remarkable class of symmetric poly-
nomials. They are indexed by a partition � and depend on a parameter �.
One of their properties is that several classical families of symmetric functions
can be obtained by specializing �, e.g., the monomial symmetric functions m�
(� =∞), the elementary functions e�′ (� = 0), the Schur functions s� (� = 1)
and �nally the two classes of zonal polynomials (� = 2, � = 1=2).

The Jack polynomials can be de�ned in various ways, e.g.:
a) as an orthogonal family of functions which is compatible with the canonical
�ltration of the ring of symmetric functions or

b) as simultaneous eigenfunctions of certain di�erential operators (the
Sekiguchi–Debiard operators).
Recently Opdam, [O], constructed a similar family F�(x; �) of non-

symmetric polynomials. The index runs now through all compositions � ∈ Nn.
They are de�ned in a completely similar fashion, e.g., the Sekiguchi–Debiard
operators are being replaced by the Cherednik di�erential-re
ection operators
(see Sect. 3). It is becoming more and more clear that these polynomials are
as important as their symmetric counterparts.
The purpose of this paper is to add to the existing characterizations of Jack

polynomials two further ones:
c) a recursion formula among the F� together with two formulas to obtain J�
from them.

d) combinatorial formulas of both J� and F� in terms of certain generalized
tableaux.
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There are many advantages of these new characterizations over the ones men-
tioned above. In a) and b), the existence of functions with these properties
is not obvious and requires a proof whereas c) and d) could immediately
serve as a de�nition of Jack polynomials. Moreover, a) and b) determine the
functions only up to a scalar while c) and d) give automatically the right
normalization.
More importantly, our formulas are explicit enough such that both the

recursion relation and the combinatorial formula enable us to prove a con-
jecture of Macdonald ([M, S]). For a partition � let mi(�) be the num-
ber of parts which are equal to i and let u� :=

∏
i=1 mi(�)!. Then we

prove

1.1. Theorem. Let J�(x; �) =
∑

� v��(�)m�(x). Then all functions ṽ��(�) :=
u−1� v��(�) are polynomials in � with positive integral coe�cients.

For an analogous statement for the F� see Theorem 4.11. We would like to
mention the recent papers [LV1] and [LV2] of Lapointe and Vinet which, by
completely di�erent methods, establish that v�� is a polynomial with integral
coe�cients. Except for special cases, before that it was not even known that
v�� is a polynomial.

We continue with the description of c) and d). First, the recursion formula.
For � ∈ Nn we de�ne the degree |�| :=∑i �i. Its length l(�) is the max-

imal index i such that �i-0. With m := l(�) we de�ne �̃m := ��m + k + 1
where k is the number of indices i = 1; : : : ; m− 1 with �i¡�m. Moreover, let
�∗ := (�m − 1; �1; : : : ; �m−1; 0; : : : ; 0). For i = m; : : : ; n let

fi(x) := F�∗(xi; x1; : : : ; xi−1; xi+1; : : : ; xn) :

Then we prove (Theorem 4.6):

F�(x) = �̃m xmfm(x) + xm+1fm+1(x) + xm+2fm+2(x) + · · ·+ xnfn(x) :
The symmetric functions are most easily obtained if the number of variables
is big enough, i.e., n= 2m. Let �+ ∈ Nn−m be the partition which is a per-
mutation of (�1; : : : ; �n−m). Then we prove (Theorem 4.10)

J�+(zm+1; : : : ; zn) = F�(0; : : : ; 0; zm+1; : : : ; zn) :

Now, we describe the combinatorial formula. For simplicity we restrict
ourselves to the symmetric case J�. Let � be a partition. A generalized tableau
of shape � is a labelling T of the boxes in the Ferrers diagram of � by numbers
1; 2; : : : ; n. To T , we associate the monomial xT :=

∏
s∈� xT (s).

We call T admissible if it satis�es for all boxes (i; j) ∈ �:
a) T (i; j)-T (i′; j) whenever i′¿i
b) T (i; j)-T (i′; j − 1) whenever j¿1 and i′¡i.
A box s = (i; j) ∈ � is critical (for T ) if j¿1 and T (i; j) = T (i; j − 1).
Let �′ be the dual partition to �. The armlength of s = (i; j) ∈ � is de�ned
as a�(s) := �i − j. Likewise, the leglength is de�ned as l�(s) := �′j − i. Then
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we introduce the linear polynomial d�(s) := �(a�(s) + 1) + (l�(s) + 1). With
dT (�) :=

∏
s critical d�(s) our formula reads (Theorem 5.1)

J�(x; �) =
∑

T admissible
dT (�)xT :

This formula immediately implies the Macdonald conjecture. Consider a
partition � and the set T of all tableaux T with xT = x�. Let H be the group
of permutations � of the labels 1; : : : ; n such that ��(i) = �i for all i and �(i) = i
whenever �i = 0. This group acts freely on T by permuting the labels such
that dT (�) and xT are left invariant. Since the order of H is u�, we obtain that
the coe�cient of x � is divisible by u�.

In the sequel we prove �rst that the eigenfunctions of the Cherednik oper-
ators satisfy our recursion formula. Then we prove that the functions de�ned
by the combinatorial formula satisfy the recursion relation as well.

2. The de�nition of Jack polynomials

Most constructions and results in the following two sections can be found in
Opdam’s paper [O] in the framework of arbitrary root systems. Here we are
only interested in the case of An−1.

Let P := Q[x1; : : : ; xn] be the ring of polynomials. For an indeterminate
� let P� = P⊗Q Q(�). If � is such that 1=� is a non-negative integer then
�1=�(x) :=

∏
i-j(1− xi x−1j )1=� is in the Laurent polynomial ring P′ = P[x−1].

Let [f]0 ∈ Q denote the constant term of f ∈ P′. Then

〈f; g〉� := [f(x)g(x−1)�1=�(x)]0

de�nes a non-degenerate scalar product on P.
Consider � := Nn. The degree of � = (�i) ∈ � is de�ned as |�| :=∑i �i

and its length as l(�) := max{k | �k-0} (with l(0) := 0). We recall the (par-
tial) order relation of [O] on �. We start with the usual ordering on the set
�+ ⊆ � of all partitions �1 = �2 = · · ·= �n = 0. Here �= � if |�| = |�|
and

�1 + �2 + · · ·+ �i = �1 + �2 + · · ·+ �i for all i = 1; : : : ; n :

This order relation is extended to all of � as follows. Clearly, the symmetric
group W on n letters acts on � and for every � ∈ � there is a unique partition
�+ in the orbit W�. For all permutations w ∈ W with � = w�+ there is a unique
one, denoted by w�, of minimal length. We de�ne �= � if either �+¿�+

or �+ = �+ and w� 5 w� in the Bruhat order of W . In particular, �+ is the
unique maximum of W�.
Non-symmetric Jack polynomials are de�ned by the following theorem.

Here x � be the monomial corresponding to �.
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2.1. Theorem. ([O] 2.6) For every � ∈ � there is a unique polynomial E�(x; �)
∈ P� satisfying
i) E� = x � +

∑
�∈�:�¡� c��(�)x

� and
ii) 〈E�; x �〉� = 0 for all � ∈ � with �¡� and almost all � such that 1=� ∈ N.
Moreover; the collection {E� | � ∈ �} forms a Q(�)-linear basis of P�.

The symmetric group W acts on P in the obvious way. Then PW is the
algebra of symmetric functions. For � ∈ �+ let m� :=

∑
Wx� denote the cor-

responding monomial symmetric function. Then (symmetric) Jack polynomials
are de�ned by:

2.2. Theorem. ([M] 10.13) For every � ∈ �+ there is a unique symmetric
polynomial P�(x; �) ∈ PW� satisfying
i) P� = m� +

∑
�∈�+:�¡� c

′
��(�)m� and

ii) 〈P�; m�〉� = 0 for all � ∈ �+ with �¡� and almost all � with 1=� ∈ N.
Moreover; the collection {P� | � ∈ �} forms a Q(�)-linear basis of PW� .
An easy consequence of the de�nitions is:

2.3. Lemma. For � ∈ �+ let P� ⊂ P� be the Q(�)-linear subspace spanned
by the Ew�; w ∈ W . Then P� is W -stable and PW� = Q(�)P�.

The action of w ∈ W on P� is, in general, di�cult to describe in terms of the
basis Ew�, but, for a simple re
ection si := (i; i+1) ∈ W , this is possible. We
�rst present only a special case and the rest later (Proposition 4.3).

2.4. Lemma. Let � ∈ � with �i = �i+1. Then siE� = E�.
Proof. This follows directly from the de�nition and the fact that �¡� = si�
implies si�¡�.

One consequence of this lemma is that if �i = 0 for all i¿m then E� is
symmetric in the variables xm+1; : : : ; xn. This fact will be crucial later on.

3. De�nition of Cherednik’s operators

As already mentioned, the symmetric group W acts on P. For i-j let sij ∈ W
denote the transposition (ij). Then

Nij :=
1− sij
xi − xj

is a well de�ned operator on P. Next, for i = 1; : : : ; n we de�ne the following
di�erential-re
ection operators, which were �rst studied by Cherednik [C] (see
also [O]):

�i := �xi
@
@xi

+
i−1∑
j=1
Nij xj +

n∑
j=i+1

xjNij
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Remark. The operators in [O] depend on the choice of a positive root system.
We use {−x1 + x2; : : : ;−xn−1 + xn} as the set of simple roots. This has the
advantage that the �i are stable under adding variables.

The �i commute pairwise. This is most easily seen by using Corollary 3.2
below. Furthermore, they satisfy the following commutation relations with the
simple re
ections si = si i+1. This one checks by direct calculation.

�isi − si�i+1 = 1
�i+1si − si�i = −1

�isj − sj�i = 0 j-i; i + 1

(In other words, the sj and �i generate a graded Hecke algebra.)

3.1. Lemma. (a) The action of �i on P is triangular. More precisely

�i(x �) = ��i x � +
∑

�∈�:�¡�
c� x �

where ��i := ��i − (k ′i + k ′′i ) with
k ′i = #{j = 1; : : : ; i − 1 | �j = �i}
k ′′i = #{j = i + 1; : : : ; n | �j¿�i}

(b) For 1=� ∈ N; the operator �i is symmetric with respect to the scalar
product 〈 ; 〉�.
Proof. (a) is [O] 2.10 and (b) is [C] 3.8. The key to part (a) is the observation
that (Nij xj)(x ai x

b
j ) contains x

a
i x

b
j if and only if a5 b while for (xjNij)(x ai x

b
j )

one needs a¡b.

3.2. Corollary. ([O] 2.7) The E� form a simultaneous eigenbasis for the �i.
More precisely; �i(E�) = ��iE�.

Remarks. 1. For an alternate proof for the existence of a simultaneous eigen-
basis see the remark after Theorem 4.6 below.
2. The eigenvalues ��i could be more concisely described as follows. Consider
the vector % := (0;−1;−2; : : : ;−n+ 1). Then ��i = (��+ w�%)i.
Another consequence is stability:

3.3. Corollary. Let � ∈ � with �n = 0 and �′ := (�1; : : : ; �n−1). Then we have
E�|xn=0 = E�′ ∈ Q(�)[x1; : : : ; xn−1] :

If � is a partition; then

P�|xn=0 = P�′ ∈ Q(�)[x1; : : : ; xn−1] :
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Proof. Obviously, when substituting xn = 0, the operators �1; : : : ; �n−1 induce
their counterpart on Q(�)[x1; : : : ; xn−1]. Hence, the �rst statement follows from
Corollary 3.2 and then the second from Lemma 2.3.

Remark. This Corollary allows to de�ne E� and P� in in�nitely many variables
x1; x2; x3; : : : where � ∈ N∞ is a sequence such that almost all �i are zero. More
precisely, they lie in P∞ := lim←−Q(�)[x1; : : : ; xn] where the limit is to be taken
in the category of graded algebras. Actually, Lemma 2.4 implies that the E�
even lie in the subalgebra P(∞) of almost symmetric functions, i.e., those
f ∈ P∞ which are symmetric in the variables xm; xm+1; : : : for some m= 1
depending on f.

4. The recursion formula

We de�ne “creation operators” for the E�. The �rst one is very easy to de�ne
but seems to be new:

� := xn sn−1sn−2 · · · s1 ;
i.e.,

(�f)(x1; : : : ; xn) := xnf(xn; x1; : : : ; xn−1) (f ∈ P) :
4.1. Lemma. The following relations hold:

�i� = ��i+1 for i = 1; : : : ; n− 1
�n� = �(�1 + 1)

Proof. Let � = sn−1 · · · s1. This is a cyclic permutation with xn� = �x1. Then
the assertion follows from the following commutation relations which hold for
all 15 i-j¡n:

xi@xi� = �xi+1@xi+1 ; xn@xn� = �x1@x1 + � :

Nij xj� = �Ni+1 j+1 xj+1; xjNij� = �xj+1Ni+1 j+1

xnNin� = xnNin xn� = xn�Ni+1 1 x1 = �Ni+1 1 x1

Nnj xj� = Nnj xn xj� = xn xjNnj� = �xj+1N1 j+1

4.2. Corollary. Let � ∈ � with �n-0. Put �∗ := (�n − 1; �1; : : : ; �n−1). Then
E� = �(E�∗).

Opdam [O] 1.2 constructed an operator which permutes two entries:

4.3. Proposition. Let i ∈ {1; : : : ; n− 1} and � ∈ � with �i¿�i+1. Then xE� =
(xsi + 1)Esi(�) with x = ��i − ��i+1.

Proof. Let E := (xsi + 1)Esi(�). Then one easily veri�es �j(E) = ��jE for all j.
The assertion follows by comparing the highest coe�cient.
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These operators together with � already su�ce to generate all E�, but we still
have to divide by the factor x. We prove a re�nement.

4.4. Lemma. For � ∈ � with 15 m := l(�)5 n let �] := (�1; : : : ; �m−1;
0; : : : ; 0; �m). Then ( ��m + m)E� = X�(E�]) where

X� := ( ��m + m)sm · · · sn−1 +
n∑

i=m+1
sisi+1 · · · sn−1

Proof. We prove the statement by induction on n− m, the number of trail-
ing zeros. If m = n then X� is just multiplication by ( ��n + n). For m = n− 1,
the assertion follows from Proposition 4.3. Assume now m5 n− 2 and put
�◦ := (�1; : : : ; �m−1; 0; �m; 0; : : : ; 0). It follows from Lemma 3.1 that ��m+1 = −m
and ��]m+1 = ��m. Put x := ��m + m, �i = si · · · sn−1, and �j :=

∑n
i=j+1 �i. Then, by

induction and Proposition 4.3, we get x(x + 1)E� = (xsm + 1)[(x + 1)�m+1 +
�m+1]E�] = [x(x + 1)�m + xsm�m+1 + (x + 1)�m+1 + �m+1]E�] . Now we use that
sm commutes with �m+1 and that smE�] = E�] (Lemma 2.4). Thus we obtain
x(x + 1)E� = (x + 1)[x�m + �m+1 + �m+1]E�] = (x + 1)X�E�] . Finally, x + 1-0
since �m-0.

Now, we introduce another normalization of the Jack polynomials. Recall
that the diagram of � ∈ � is the set of points (or boxes) (i; j) ∈ Z2 such that
15 i 5 n and 15 j 5 �i. As usual, we identify � with its diagram. For each
box s = (i; j) ∈ � we de�ne the arm-length a�(s), the leg-length l�(s) and the
�-hooklengths c�(s), d�(s) as follows:

a�(s) := �i − j
l′�(s) := #{k = 1; : : : ; i − 1 | j 5 �k + 15 �i}
l′′� (s) := #{k = i + 1; : : : ; n | j 5 �k 5 �i}
l�(s) := l′�(s) + l

′′
� (s)

c�(s) := �a�(s) + (l�(s) + 1)

d�(s) := �(a�(s) + 1) + (l�(s) + 1)

Now, we de�ne

F�(x; �) :=
∏
s∈�
d�(s)E�(x; �) ;

J�(x; �) :=
∏
s∈�
c�(s)P�(x; �) :

If � ∈ �+ is a partition then l′(s) = 0 and l′′(s) = l(s) is just the usual leg-
length. Moreover, c�(s) is called the lower hook length in [S]. This also shows
that our J�(x; �) coincides with J

(�)
� in [M].

First we state a simple lemma which calculates d�(s) in a special case.
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4.5. Lemma. Let � ∈ � and s = (i; 1) ∈ �. Then d�(s) = ��i + i + a0 where
a0 := #{k = i + 1; : : : ; n | �k ¿0}.
Proof. Follows directly from the de�nitions.

Now we can prove our main recursion formula:

4.6. Theorem. For any 15 k 5 n put

�k := xksk−1 · · · s1
For � ∈ � with m := l(�)¿0 let

�∗ := (�m − 1; �1; : : : ; �m−1; 0; : : : ; 0) ;
Y� := X�� = (��m + m)�m + �m+1 + · · ·+ �n

Then F� = Y�(F�∗).

Proof. Corollary 4.2 and Lemma 4.4 imply xE� = Y�(E�∗) with x = ��m + m.
The diagram of �∗ is obtained from � by taking the last non-empty row,
removing its �rst box s0 = (m; 1) and putting the rest on top. One easily checks
from the de�nitions that the arm-length and the leg-length of the remaining
boxes do not change. Moreover x = d�(s0) by Lemma 4.5. This proves the
theorem.

Remark. One could use Theorem 4.6 as a de�nition of F�. Then reading the
proofs of Lemma 4.4 and Theorem 4.6 backwards one sees that the so de�ned
functions are simultaneous eigenfunctions for the Cherednik operators. This
gives an alternate proof of Corollary 3.2 and of the commutativity of Cherednik
operators.
The following Corollary shows another way to normalize non-symmetric

Jack polynomials in the case the number of variables is large enough. It is an
analogue of Stanley’s normalization in [S].

4.7. Corollary. Let � ∈ �; put d := |�| and m := l(�). Assume n= m+ d.
Then the coe�cient of xm+1 · · · xm+d in F� is d!.
Proof. We have

c := xm+1 · · · xm+d = �i(xm+2; : : : ; xm+d)
for i = m+ 1; : : : ; m+ d and this is the only way, c can arise as the
image of an operator �i. Hence, Theorem 4.6 implies that the coe�cient of
c in F� is d times the coe�cient of xm+2 · · · xm+d in F�∗ . But F�∗ is symmet-
ric in the variables xm∗+1; : : : ; xn where m∗ = l(�∗). The assertion follows by
induction.

We give the �rst of two ways how to obtain the symmetric Jack polyno-
mials from the non-symmetric ones. Before we do so, recall some notation.
For any � ∈ � let mi(�) := #{k | �k = i} and u� :=

∏
i=1mi(�)!.
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4.8. Theorem. For � ∈ �+ with m := l(�) put
�0 := (�m − 1; : : : ; �1 − 1; 0; : : : ; 0) :

Then J�(x; �) = 1
(n−m)!

∑
w∈W w�

m(F�0 ).

Proof. Denote the right hand side by J . Let �− := (0; : : : ; 0; �m; : : : ; �1). Then
Corollary 4.2 implies that F ′ := �m(F�0 ) is proportional to F�− . Lemma 2.3
implies that J and J� are proportional.

To see that they are equal, it su�ces to compare the coe�cients of x�
−
.

Since � does not change the leading coe�cient, the coe�cient of z�
−
in F ′

is
∏

s∈�−
s-(i;1)

d�−(s). Since �− is minimal in W�, no other monomial occurring in

F ′ is conjugated to x�
−
. Moreover, F ′ is invariant for the isotropy group W�− .

Its order is (n− m)!u�. Hence the coe�cient of x�− in J is

u�
∏
s∈�−
s-(i;1)

d�− (s)

On the other hand, by de�nition, the coe�cient of x�
−
in J� is∏

s∈�
c�(s) :

Let w ∈ W be the shortest permutation with w(�) = �−. This means w(i)¿
w(j) whenever �i¿�j but w(i)¡ w(j) for �i = �j and i ¡ j. Consider the
following correspondence between boxes of � and �−:

� 3 s = (i; j)↔ s− = (�(i); j + 1) ∈ �− :
This is de�ned for all s with j¡�i. One easily veri�es that a�(s) = a�−(s−) + 1
and l�(s) = l�−(s−). Hence, c�(s) = d�−(s−), i.e., s and s− contribute the same
factor to the products above. What is left out of the correspondence are those
boxes of � with j = �i and the �rst column of �−. The �rst type of these
boxes contributes u� to the factor of J�. The second type doesn’t contribute by
construction. This shows that J� = J:

This proof gives a bit more, namely a result of Stanley ([S] Theorem 1.1 in
conjunction with Theorem 5.6).

4.9. Corollary. Let � ∈ �+ with d := |�|5 n. Then the coe�cient of m1d in
J� is d!.

Proof. We keep the notation of the proof of Theorem 4.8. We have

F ′ = �m(F�0 ) = xn−m+1 · · · xnF�0 (xn−m+1; : : : ; xn; x1; : : : ; xn−m) :
Hence every monomial occurring in F ′ which contains each variable
with a power of at most one is of the form xi1 · · · xid−mxn−m+1 · · · xn with
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15 i1 ¡ · · ·¡ id−m 5 n− m. By Corollary 4.7, each of them has the coef-
�cient (d− m)!. Hence the coe�cient of x1 · · · xd in J� is

1
(n− m)! (d− m)!

(
n− m
d− m

)
d!(n− d)! = d! :

The next theorem establishes a direct relation between symmetric and
non-symmetric Jack polynomials. It needs more variables than symmetriza-
tion but has the advantage of being stable in n. Observe, that � is not required
to be a partition.

4.10. Theorem. Let � ∈ � and m ∈ N with l(�)5 m5 n− l(�). Let �+ be
the unique partition which is a permutation of (�1; : : : ; �n−m). Then

J�+(xm+1; : : : ; xn) = F�(0; : : : ; 0; xm+1; : : : ; xn) :

Proof. Recall that P� ⊂ P� is the Q(�)-linear subspace spanned by all Ew�,
w ∈ W . Then Corollary 3.3 implies that P�|xn+1−m=···=xn=0 = P�+ ⊆
Q(�)[x1; : : : ; xn−m]. Since P� is W -stable we conclude that also
P�|x1=···=xm=0 = P�+ ⊆ Q(�)[xm+1; : : : ; xn]. Lemma 2.3 implies that both sides
of the equation are equal up to a factor c ∈ Q(�). To determine c we may
assume that n= m+ |�|. Then, by Corollaries 4.7 and 4.9, the monomial
xm+1 · · · xm+|�| �gures on both sides with the same non-zero coe�cient. Hence
c = 1.

Although, as already indicated in the introduction, the Macdonald conjecture
follows immediately from the combinatorial formula of the next section, a
direct proof using the recursion formula might be of interest. To formulate
its analogue for the non-symmetric polynomials we introduce the following
notation. Fix an m ∈ N with 05 m5 n. We split every � ∈ � in two parts
�′ and �′′ where �′ (respectively �′′) consists of the �rst m (respectively last
n− m) components of �. We write � = �′�′′. Then we de�ne the partially
symmetric monomial functions as m(m)� :=

∑
� x

�′� where � runs through all

permutations of �′′. Their augmented version is m̃(m)� := u�′′m
(m)
� . Let �(m) ⊆ �

be the set of those � where �′′ is a partition. Observe that �(0) = �+, m(0)� =
m�, and m̃

(0)
� = m̃�.

4.11. Theorem. a) Let � ∈ � and m ∈ N with m= l(�). Then

F�(x; �) =
∑

�∈�(m)
a��(�)m̃

(m)
�

with a�� ∈ N[�] for all � ∈ �(m).
b) Let � ∈ �+. Then J�(x; �) =

∑
�∈�+ b��(�)m̃� with b�� ∈ N[�] for all

� ∈ �+.
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Proof. Part b) follows immediately from a) and Theorem 4.10. The proof of
a) is by induction on |�|. First observe that it su�ces to prove the theorem
for m = l(�). Since |�∗| = |�| − 1 and l(�∗)5 m, the assertion is true for
F�∗ . With 	 := �m+1 + · · ·+ �n we have Y� = (��m + m)�m +	. Moreover
��m + m = ��i − k + m where k is the number of j = 1; : : : ; m− 1 with �j =
�m. Thus −k + m= 1. By the recursion formula Theorem 4.6, it su�ces to
prove the following.

Claim. Let � ∈ �(m). Then both �m(m̃(m)� ) and 	(m̃(m)� ) are linear combinations
of m̃(m)� , � ∈ �(m) with coe�cients in N.
The e�ect of �i on monomials is �i(x�) = x �� where

�� := (�2; : : : ; �i; �1 + 1; �i+1; : : : ; �n) :

In particular, �m a�ects only the �rst m variables which proves the claim
for �m.
It is easy to check that the �i satisfy the following commutation relations:

sj�i = �isj; if i ¡ j

sj�j = �j+1 ;

sj�j+1 = �j ;

sj�i = �isj+1; if i ¿ j + 1

This shows that 	(m̃(m)� ) is invariant for sm+1; : : : ; sn. In particular, it su�ces
to check the coe�cient of x �� in 	(m̃(m)� ) when �� ∈ �(m).
Assume that x� occurs in m(m)� , i.e., that �′ = �′ and that � ′′ is a permu-

tation of �′′. Then � is recovered from �� by removing a part ��i of �� with
��i = k := �1 + 1 and i = m and putting �1 in front. This shows that 	(m

(m)
� )

contains x �� with multiplicity mk(�� ′′). Furthermore, mi(�� ′′)5 mi(�′′) for i-k
and mk(�� ′′)5 mk(�′′) + 1. This implies that 	(m̃(m)� ) contains m̃(m)� with pos-
itive integral multiplicity.

5. The combinatorial formula

In this section we give a simple and explicit formula for both the symmetric
and non-symmetric Jack polynomials. Let � ∈ �. A generalized tableau of
shape � is a labelling T of the diagram of � by the numbers 1; : : : ; n. The
weight of T is |T | = (|T |1; : : : ; |T |n) where |T |i is the number of occurrences
of the label i in T . Of course |T | is Sn-conjugate to a unique partition. One
writes xT for the monomial x|T |.

De�nition. A generalized tableau of shape � ∈ � is admissible if for all
(i; j) ∈ �
a) T (i; j)-T (i′; j) if i′ ¿ i:
b) T (i; j)-T (i′; j − 1) if j ¿ 1; i′ ¡ i.
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It is called 0-admissible if additionally
c) T (i; j) ∈ {i; i + 1; : : : ; n} if j = 1.
De�nition. Let T be a generalized tableau of shape �.
a) A point (i; j) ∈ � is called critical if j¿1 and T (i; j) = T (i; j − 1).
b) The point (i; j) ∈ � is called 0-critical if it is critical or j = 1 and
T (i; j) = i.

The hook-polynomials of T are

dT (�) :=
∏

s critical
d�(s; �) ;

d0T (�) :=
∏

s 0-critical
d�(s; �) :

Our terminology can be explained as follows. Consider the tableau T 0 which
arises from T by adding a zero-th column and labelling its boxes consecutively
by 1; 2; : : : ; n. Then T is 0-admissible if T 0 is admissible and a box s in T is
0-critical if it is critical in T 0.
Our main theorem is:

5.1. Theorem. Let � ∈ �. Then
F�(x; �) =

∑
T 0-admissible

d0T (�)x
T :

Let �+ ∈ �+ be the unique partition conjugated to �. Then
J�+(x; �) =

∑
T admissible

dT (�)xT :

Proof. We prove �rst the formula for J�+ assuming it for F�. Let m := l(�)
and assume n= |�|+ l(�). Consider only those tableaux of shape � which
contain only labels ¿ m. Then “0-admissible”, “0-critical” are the same as
“admissible”, “critical” respectively. By Theorem 4.10, the formula for F�
implies that for J�+ .
For the non-symmetric case, denote the right hand side of the formula

by F ′� . We are going to prove the following two lemmas.

5.2. Lemma. Suppose �i = 0 and �i+1¿0; and write d := d�(�; (i + 1; 1)).
Then we have dF ′si� = (d− 1)si(F ′� ) + F ′� .
For � ∈ � let �(�) := (�2; : : : ; �n; �1 + 1).
5.3. Lemma. Let d := d��(�; (n; 1)) then F ′�� = d�(F

′
� ).

We �nish �rst the proof of Theorem 5.1. In the situation of Lemma 5.2
let � := si�. Then d�(i; 1) = d− 1 while the hook-length of the remaining
boxes doesn’t change. Hence, if F� = cE� then F� = d−1

d cE�. Let a0 be the
number of k = i + 2; : : : ; n with �k ¿ 0. Then ��i+1 = −i − a0 while ��i = d−
1− i − a0 (Lemma 4.5). Hence, x := ��i − ��i+1 = d− 1. With Proposition 4.3
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we get dF� = (d− 1)cE� = xcE� = (xsi + 1)cE� = ((d− 1)si + 1)F�. We con-
clude from Lemma 5.2 that F� = F ′� implies Fsi� = F

′
si�.

In the same manner, we obtain from Lemma 5.3 and Corollary 4.2 that
F�� = F ′�� if and only if F� = F

′
� . Since every � ∈ � is obtained by repeatedly

applying � or switching a zero and a non-zero entry, the theorem follows
by induction (and F0 = F ′0 = 1).

Proof of Lemma 5.2. If T is a tableau of shape �, let T ′ be the tableau of
shape si� obtained by moving all the points in row i + 1 up one unit to the
previously empty row i.
Let us ignore for a moment the labels of (i + 1; 1) ∈ � and (i; 1) ∈ si�. For

all other points in T , the label is admissible (resp. critical) if and only it is so
for the corresponding point in T ′, and the twisted hooklengths are unchanged.
(In fact, l′, l′′ and a� are all unchanged!)

To examine the contributions of (i; 1) and (i + 1; 1), we divide admissible
tableaux T of shape � into two classes:
A = {T | T (i + 1; 1)-i + 1}; and B = {T | T (i + 1; 1) = i + 1}:

Similarly we divide admissible tableaux U of shape si� into three classes:
A′={U | U (i; 1)-i; i+1}; B′={U | U (i; 1)= i+1}, and B′′={U | U (i; 1)= i}:

The map T 7→ T ′ is a bijection from A to A′, and satis�es dT (�)xT =
dT ′(�)xT

′
. Also, if T ∈ A then replacing each occurrence of the label i by

i + 1 and vice versa, we get another tableau siT ∈ A with dT (�) = dsiT (�).
This implies ∑

U∈A′
dU (�)xU =

∑
T∈A

dT (�)xT = si
∑
T∈A

dT (�)xT :

T 7→ T ′ is also a bijection from B to B′, however T (i + 1; 1) is critical but
T ′(i; 1) is not. Since d�(�; (i + 1; 1)) = d, we get

d
∑
U∈B′

dU (�)xU =
∑
T∈B

dT (�)xT :

Finally T 7→ siT ′ is a bijection from B to B′′, and T (i + 1; 1), siT ′(i; 1)
are both critical. Since dsi�(�; (i; 1)) = d− 1 (l′′, a� are unchanged, while l′
decreases by 1), we get

d
∑
U∈B′′

dU (�)xU = (d− 1)si
∑
T∈B

dT (�)xT :

Combining these we get dF ′si� = d
∑

A′ +d
∑

B′ +d
∑

B′′ = [
∑

A+
(d− 1)si

∑
A] +

∑
B+(d− 1)si

∑
B = (d− 1)siF ′� + F ′� :

Proof of Lemma 5.3. For a tableau T of shape �, let T ′ be the tableau of
shape �� constructed as follows:
1) move rows 2 through n up one place.
2) pre�x the �rst row by a point with the label 1 and move the row to the
n-th place.

3) modify the labels by changing all 1’s to n’s and the other i’s to (i − 1)’s.
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If s is a point in T , we write s′ for the corresponding point in T ′, thus
s = (1; j) corresponds to s′ = (n; j + 1) and for i¿1, s = (i; j) corresponds to
s′ = (i − 1; j).
First observe the twisted hooklengths of corresponding points are the

same. Indeed a�(s) = a��(s′), and l′�(s) + l
′′
� (s) = l

′
��(s

′) + l′′��(s
′). (l′ might

decrease by 1, but then l′′ increases by 1, so that the sum is unchanged.)
Second, note that if T is admissible then so is T ′. This is obvious for the

�rst column, and for (i; j) with j¿1 and i ¡ n, we only need to check that
T ′(i; j)-T ′(n; j). But these labels are obtained by applying 3) to the labels
T (i + 1; j) and T (1; j − 1) which are distinct by the admissibility of T . The
argument for the admissibility of T ′(n; j) is similar.
Next, note that the map T 7→ T ′ is actually a bijection from admissible

tableaux of shape � to those of shape ��. The inverse map is obtained by
deleting the label T ′(n; 1) (which must be n), moving the last row to the top,
and applying the inverse of 3).
Now, observe that the point (n; 1) is a critical point of T ′, and any other

point s′ of T ′ is critical if and only if the corresponding point s in T is critical.
This is obvious for all points except (n; 2) which corresponds to (1; 1) in T ;
but T ′(n; 2) = T ′(n; 1) = n if and only if T (1; 1) = 1.

Finally by 2) and 3), if the weight of T is � then the weight of T ′ is ��,
thus xT

′
= �(xT ). This means

F ′�� =
∑
T ′
dT ′(�)xT

′
= d��(�; (n; 1))

∑
T

dT (�)�(xT ) = d�F ′� :
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