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Unitary Representations on the Shilov 
Boundary of a Symmetric Tube Domain 

SIDDHARTHA SAHI 

ABSTRACT. Let f! = G/K be a symmetric tube domain where G is the 
universal cover of Aut(f!). Let X be a line bundle on the Shilov boundary, 
and let I(x) be the space of sections. 

This paper determines (a) the composition series for I(x) as a ({1, K)-
module, (b) the K-module structure of each constituent, (c) explicit for-
mulas for possible invariant Hermitian forms on these constituents, and (d) 
the unitarizable constituents. 

Introduction. 
Let n = G I K be a symmetric tube domain of rank n and let G be the 

universal covering group of Aut(O). The Shilov boundary of n is of the form 
G I P, where P = LN is a maximal parabolic subgroup with abelian nilradical N. 
Let x be a character of L such that the induced representation I(x) = Ind~(x) 
has a non-trivial, invariant, Hermitian form. 

This paper determines the composition series for such I(x), describes the 
K-module structure of each constituent, and obtains explicit formulas for the 
invariant Hermitian forms on the constituents. In particular, this leads to a 
complete determination of the unitarizable constituents of the I(x). 

The main idea is the following: After suitable normalization, the Hermitian 
form has a rational dependence on the parameter. Moreover, if x is suitably 
integral, then the Hermitian form is given by an equivariant differential operator 
and, as shown in [S], the Capelli identity of [KS] gives an explicit formula for 
this form at these points. In view of the rationality, this allows one to calculate 
Hermitian forms for all x, and everything else follows. This technique should 
perhaps be considered an "algebraic" continuation of the Capelli identity. 
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276 SIDDHARTHA SAHI 

Our results extend those of [W], [RV], [FK], and those of [KV], [G], [J] 
among others. 

The first three references deal with holomorphic representations on n. These 
imbed in the Shilov boundary through the boundary value map, and occur as 
certain constituents of I(x). But I(x) has other constituents as well, which 
should, perhaps, be related to other G-orbits on Gc/ Pc. 

[KV] studies I(x) for Sp(n, R) and U(n, n), but only for the trivial character 
X· [G] is in the setting of our paper, but describes only those constituents of I(x) 
which have one-dimensional K-types. Finally, [J] answers the same questions 
as this paper but for a different class of groups, and uses completely different 
methods. ( The group U ( n, n) is the only one common to both our classes.) 

The organization of this paper is as follows. The necessary notation is intro-
duced in §0. In §1 an explicit formula is obtained for possible Hermitian forms on 
I(x). The Jantzen filtration is determined in §2, and the irreducible constituents 
are calculated in §3. In §4 the asymptotic supports (in the sense of [KVl]) of the 
various constituents are determined. These turn out to be either certain cones 
Tp,q with p + q::; n, or else the union of two such cones Tp,n-p U Tp+l,n-p-1· 

§5 determines which of these constituents are unitary. Of particular interest 
is Theorem 5.C, which shows that for each pair of integers p, q with p + q < n 
there is a unique "small" unitary representation Vp,q with support Tp,q, whose K-
types are given by formula (7). For p = 0 or q = 0, these are the representations 
obtained by Wallach in [W]. They are all unipotent in the sense of [Vl]. 

In [Sl], we show that each of these small representations is naturally realized 
on the £ 2-space of an L orbit inN. In particular, this implies that these repre-
sentations are irreducible upon restriction to P. This should be compared with 
the results of [SS]. 

The results of this paper also seem to have some relevance to the questions 
raised in [KR], which were in turn motivated by number theoretic considera-
tions. In particular, one can show that if G is classical, and I(x) descends to 
a representation of the corresponding linear group (or of its metaplectic dou-
ble cover), then all the composition factors can be "obtained" via the oscillator 
correspondence. The details will appear elsewhere. 

§0. Notation. 
We start by recalling some notation from [S]. 
In what follows, all Lie algebras will be real unless complexified with a sub-

script "c". 
Let (g, t) be an irreducible Hermitian symmetric pair of tube type. Fix a 

Cartan decomposition g = t + p and choose as ~ p and ts ~ t so that ~s = as EB ts 
is a maximally split Cartan subalgebra of g. 

It is known that the restricted root system is of type Cn where n =dim( as). 
Thus we may choose a basis et,"' ,en for (as)* such that E(g,as) = {±ei ± 
ej} U {±2ej}· 
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UNITARY REPRESENTATIONS ON THE SHILOV BOUNDARY 277 

The root spaces for ±ci ± Ej have a common dimension which we will denote 
by d. 

The root spaces for ±2c j are one-dimensional. Thus ±2c j may be regarded 
as roots of ~s in g, vanishing on t8 • To each 2c-j we may attach in a standard 
manner, an S-triple {hj,ej,/j}, contained in g. TheseS-triples commute, and 
{ h = ~7= 1 hj, e = ~7= 1 ei, f = ~7= 1 /j} is also an S-triple. 

The eigenvalues of ad( h) on g are -2, 0 and 2. Let us write n, I and n for the 
corresponding eigenspaces. Then q = I + n is a maximal parabolic subalgebra. 

The Cayley transform is the element c = exp'~/(e +f) in Ad(gc)· Lett= 
ic(a8 ), then~= t+t8 is a compact Cartan subalgebra for g (and t); and bi I 'Yi = 
co (2ci), i = 1, · · · , n} is a maximal set of (Harish-Chandra) strongly orthogonal 
roots in ~(~c, Qc)· 

Let us write v for c- 1 +···+En and p, for 'Y1 + · · · + 'Yn· 
Let G' be the adjoint group of g and let G be its universal covering group. 

Let K' and K be the analytic subgroups corresponding to t, and let P = LN be 
the maximal parabolic subgroup of G corresponding to q. Then K' is a maximal 
compact subgroup of G'' and n = G I K = G' I K' is a symmetric tube domain 
of rank n and G I P is its Shilov boundary. 

We describe next the characters of L. First of all, v is (the differential of) a 
positive character of L; and for each t E C, vt is a character of L. Similarly, 
p, is (the differential of) a unitary character of K; and for each c E C, p," is 
a character of K. Now p," restricts to a character of the component group of 
L n K, which is the same as the component group of L; hence this restriction 
extends to a unique character of L, which we denote by p," as well. Finally, the 
most general character of L is of the form p," 18) vt. 

We will write (7r.,,t, J(c-, t)) for the induced representation Ind~(p," 18) vt) (K-
finite, normalized induction). 

It is known that the highest weights of K- types in I ( c, t) are of the form a.+ c p, 
with 

(1) 
n 

a.= L:ani 
i=1 

where the ai are integers with a 1 ~ · · · ~ an, and each such K-type occurs 
exactly once. 

We are interested in the situation when J(c-, t) has a g-invariant, K-unitary 
Hermitian form. This happens if and only if c is real and t is either real or purely 
imaginary. Furthermore, if tis imaginary and non-zero then I(c, t) is irreducible 
and unitary; if tis real then I(c, -t) is the Hermitian dual of I(c, t); and finally, 
I(c + 1, t) ~ I(c, t). Consequently, for the rest of this paper we assume 

(2) t E R+ and c E [0, 1) 
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§1. Rationality. 
It is convenient to realize all of the 7rg,t on a fixed space. For this, let (LnK)' be 

the (compact) image of LnK under the projection from G toG', and write V = 
L 2 (K' f(L n K)')K'-finite· If e = 0, then restriction to K gives an isomorphism 
of J(O, t) with V. For general c:, multiplication by the function J.t-" gives an 
isomorphism of J(c:, t) with V. In view of this, when c: is understood, we will 
simply write a for the K'-type with highest weight a+ C:J.t. 

Now, lett, e be as in (2) and let (, )E,t be a 7rg,t(g) invariant Hermitian form on 
I(c:, t). On each K-type, ( , )E:,t is a constant multiple of the standard (positive 
definite) form ( , ) on V coming from L2(K') through the above identification. 

Fix K-types a and (3 and choose (, )-unit vectors v and w in V0 and V,a 
respectively, and let 

() (w,w)"t 
q,a,o: c:, t = ( ) ' . 

V, V E,t 

It is well known that 1f't;;,t is irreducible for most c: and t, and thus (, )E,t is 
unique up to a scalar and q,a,a:(c:, t) is unique, period! Our first theorem is a 
formula for q,a,a:{e, t). An obvious multiplicative property implies that it suffices 
to consider the case where 

{3) (3 =a+ 'Yi for some i such that ai-l ~ ai + 1. 

THEOREM. For a as in {1), (3 as in {3), we have q,a,o:(c:, t) = ai fai, where 

{4) af = af(a, c:, t) = ai + e + d(n- 2i + 1)/4 + 1/2 ± tf2. 

PROOF. For each X in g, (c:, t) 1-+ 1f'E:,t(X) is an affine map. Arguing as in 
{Theorem 4.11(c) of [Vl]) we conclude that q,a,a:{c:, t) is a rational function of 
e and t. Thus it suffices to prove the theorem for the special case where t is a 
positive integer. For such t, the theorem follows from Theorem 1 of [S], once 
we note that the argument in the appendix of that paper shows that 7rg,t is 
irreducible for most c:. 0 

§2. Reducibility. 
For this section, let us fix c:, t as in (2), and write Vo = V = I(c:, t). Let 

s E R be variable, then Theorem 1 shows that, after multiplying by a suitable 
power of (s-t), we may assume that (, )" 8 is non-zero at t, and non-degenerate 
elsewhere in a small interval (t- li, t + 8).' 

Let Vk consist of those vectors v in V for which there exists a polynomial 
function f, defined on ( t- li, t + li) and taking values in a fixed, finite dimensional 
subspace of V, with the following two properties: (a) f(t) = v; (b) for all w in 
V, the function (f(s), wks vanishes to order at least kat s = t. 

DEFINITION((V]). The filtration Vo 2 V1 2 · · · 2 Vk 2 · · ·, is called the 
Jantzen filtration of J(c:, t) and Qk = Vk/Vk+l are called the Jantzen subquotients. 
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It is easy to check that each Vk is 1ft-invariant. Furthermore, if v, v' E Vk and 
we choose f, f' as above, then lims-+t (s_!t)k (f(s), f'(s))E,s depends only on v, v' 
and defines a Hermitian form (, ); on Vk whose radical is exactly Vk+l· Thus the 
Jantzen subquotients are (g, K) modules with non-degenerate Hermitian forms. 

In our situation ( K-multiplicity one), these subquotients admit a simpler de-
scription. 

LEMMA. In the present situation, v E vk if and only if (v, v)E,S vanishes to 
order at least k at s = t. 

PROOF. Suppose v satisfies the condition of the Lemma, and define f(s) = v. 
Since K-multiplicities are 1, (, )" 8 is definite on each K-type (for s "I t) and 
we can write V = Cv EB ( Cv )..L, ~ith a fixed, orthogonal decomposition for all 
(, )E,s' If w E V, we may write w = cv + v..L. Then (f(s), w)E,s = (v, cv)E,s 
vanishes to order at least k at s = t. Thus v belongs to Vk. 

Conversely, suppose v E Vk and f(s) is as in the definition of Vk. Write 
V = Cv EB (Cv)..L as above and decompose f(s) = c(s)v + g(s) where c(s) is a 
(scalar valued) polynomial, and g(s) takes values in (Cv)..L. Then (f(s),v)E,s = 
c(s)(v, v)E,s· At t = s, the left side vanishes to order at least k, and since c(t) = 1, 
so does (v, v)E,s· 0 

COROLLARY. The Jantzen subquotient Qk consists of the K -types for which 
(, )" t vanishes to order exactly k. Furthermore, if we fix a E Qk and normalize 
(, )!:t to be equal to (, ) on Va, then for each {3 E Qk, (, )!,t = Q{3,a(c, t)(, ) 
on v/3. 

§3. Irreducibility. 
In this section we decompose I(c, t) into its irreducible components. 

LEMMA. Let a, {3, t, at be as in (1) - ( 4). Then 

(a) V13 ~ 7rg,t(g)Va if and only if a; "I 0. 
(b) Va ~ 7rg,t(g)Vf3 if and only if at "I 0 
(c) {3 and a belong to the same irreducible component of l(c, t) if and only 

if at "I 0. 

PROOF. Let t0 = t 0 (a, i, c) = 2(ai+c+~(n-2i+ 1)+~ ), so that at = ~(t 0 ±t). 
Then Theorem 1 shows that q13 ,a ( c, t) = !: :::. 

Suppose a; = 0, that is t = t0 • Now if to "I 0, Qf3,a(c, t) has a pole at t0 • 

Thus in the Jantzen filtration of V at t 0 , Va occurs in lower degree than v13 . In 
particular V13 Ci rrE,tJg)Va. If to= 0 then Qf3,a(c, t) = -1 is negative. However 
the representation 7rg,O is unitary (and completely reducible), so a and {3 must lie 
in different summands; thus once again V13 Ci rrE,to (g)Va. This proves the "only 
if" part of (a). 
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For the other direction, fix v E Yo: and X E g, and let P(c, t) = Px,v(c, t) 
be the orthogonal projection of 1l"e:,t(X)v to Y,a. Since (c, t) ~--+ 1l"e:,t(X) is affine, 
there are w, wo and WI in Y,a such that P(c, t) = tw + cw0 +WI· The first part 
of the proof shows that P(c,t0 (a,i,c)) = 0, whence P(c,t) = (2ai)w. 

In the appendix it is shown that ~ne can find X E g and v E Yo: such that 
Px,v(c, t) =/: 0 for some (c, t). It follows that w =/: 0, and so P(c, t) =/: 0 for all 
t =/: t 0 (a,i,c). This shows that Yo:~ 1l"e:,t(g)Y,a if a;=/: 0. This completes the 
proof of (a); (b) is similar, and (c) follows. 0 

In the situation of the Lemma, we will say a and f3 are linked if (c) holds. 
Two K- types of I ( c, t) will be called equivalent if they can be connected through 
a chain of linked K-types. 

Let (rr, W) be an irreducible subquotient of I(c, t), and a beaK-type of W. 
Clearly all the K-types in the equivalence class of a occur in W. On the other 
hand, as observed in Lemma 3.1 of [S], the K-types of rr(g)(Wa:) are contained 
in the set {a, a ± 'Yi I j = 1, · · · , n}. This shows that W coincides with the 
equivalence class of a. 

The preceding remarks show that I(c, t) is reducible if and only if there is a 
K-type a as in (1), and an index i such that one of at is an integer. 

DEFINITION. We say that a is of type (p, q) if p is the smallest index such that 
one of a;+l is a non-positive integer; and q is the smallest index such that one 
of a!-q is a positive integer. Finally, we will write Yp,q for the subspace spanned 
by the K-types of type (p, q). 

(Not all possible Yp,q's need occur for a given c and t.) 

THEOREM. The irreducible constituents of I(c, t) are exactly the non-zero 
Yp,q's. 

PROOF. It suffices to show that the K-types of Yp,q form a single equivalence 
class. Suppose a as in (1) is of type (p,q) and f3 is as in (3). Now f3 is also of 
type (p, q), unless one of the following holds: 

(a) i :::; p and one of at + 1 is a non-positive integer; 
(b) i = p + 1 and neither of at+ 1 is a non-positive integer; 
(c) i = n- q and neither of at+ 1 is a positive integer; 
(d) i ~ n- q + 1 and one of at+ 1 is a positive integer. 

From the definition of p and q, it is clear that (a) and (c) are impossible, and 
that (b) or (d) can occur if and only if the appropriate at equals zero. In view 
of the Lemma, we see that if i :::; p + 1 or i ~ n- q, then f3 =a+ 'Yi is linked to 
a if and only if it is of the same type. 

It remains to show that if p + 1 > i > n- q, then f3 is linked to a. Suppose 
not, then one of at, say at, must equal 0. Then a~-q < at = 0 < a;+l, and 
now from the definition of p and q, it follows that a:;;_q is a positive integer, and 
a;+l is a non-positive integer. However, since a:;;_q < a;+ I, this is impossible. 
This finishes the proof. 0 
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§4. Supports. 
Let C be the set {Ei rni I r1 2: · · · 2: rn E R}. 

DEFINITION. ([KV); 6.1) If W is a subquotient of some J(c, t), we say that 
A E C is in the asymptotic support T(W) of W, if there is a sequence tk ----. 0 of 
positive real numbers, and a sequence of ak of K -types of W, such that tkak ----. A. 

We now describe the asymptotic supports of the irreducible components of 
J(c, t). Clearly, if J(c, t) is irreducible, its asymptotic support is all of C, and 
there is nothing more to say. If J(c, t) is reducible, then T(Vp,q) is determined 
by p and q. The next Lemma provides some control over the possible pairs (p, q) 
which can occur. 

LEMMA. Suppose I(c, t) is reducible and Vp,q is an irreducible subquotient, 
then p + q :$ n + 1. Furthermore unless d is odd and t - ~ is not an integer, we 
have p + q :$ n. 

PROOF. Let a be of type (p,q). Clearly q :$ n, so ifp = 0, 1, thenp+q :$ n+l. 
Assume therefore that p 2: 2. Since J(c, t) is reducible, one of the four numbers a;, a;_1 is an integer. By the definition of p, this integer must be positive. On 
the other hand if n - q < p- 1, this integer would be less than the corresponding 
a;_q which, by the definition of q, is non-positive. This shows that n- q 2: p- 1 
which proves the first part of the Lemma. 

Moreover, if dis even, or if t- ~ E Z, then one of ai: is an integer. Arguing 
as before, we see that in this case n - q 2: p. 0 

For p + q :$ n, let Tp,q be the cone {Ei rni E C I rp+l = · · · = rn-q = 0} 

THEOREM. Let Vp,q be as in Theorem 3. Then if p + q :$ n, T(Vp,q) = Tp,qi 
and if p + q = n + 1, T(Vp,q) = Tp,q-1 U Tp-l,q· 

PROOF. Fix a K-type a in Vp,q· Then the proof of Theorem 3 shows that if 
c1 2: c2 2: · · · 2: Cp 2: 0 is any decreasing sequence of nonnegative integers, then 
the K-type a+ Ef=l Ci"fi also belongs to Vp,q· Similarly ifO 2: Cn-q+l 2: · · · 2: Cn 
is a decreasing sequence of non-positive integers then a+ E~=n-q+l Ci"fi belongs 
to Vp,q· 

Definition 3 implies that the first n - q coefficients of possible K-types in 
Vp,q are bounded below, and the last n- p coefficients are bounded above. The 
theorem follows. 0 

§5. Unitarity. 
Let W be an irreducible constituent of some J(c, t). 

LEMMA. W is unitarizable if and only if for each K -type a of W as in (1) 
and for each index i = 1, · · · , n, satisfying af =f. 0 and ai-l > ai, we have 

(5) 
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PROOF. In view of Corollary 2 it suffices to show that for each pair of K-types 
a and {3 in W, Q{3,a(t:, t) is positive. The discussion following Lemma 3 shows 
that it suffices to check this for linked pairs, and so we may assume that {3 is as 
in (3) and at f:. 0. Theorem 1 shows that Q[3,a(t:, t) is positive if and only if at 
have the same sign. Since t ~ 0, this happens if and only if either a; > 0 or 
at < 0. Rewriting this, we get (5). D 

We now give explicit descriptions of the unitarizable constituents. For conve-
nience, we divide the discussion into three cases: 

(A) (Complementary series) W = I(t:, t) 
(B) (Large Constituents) W = Vp,q with p + q = n, n + 1 
(C) (Small Constituents) W = Vp,q with p + q:::; n- 1 
Also let us abbreviate the frequently occurring constant t: + ~ ( n + 1) + ~ by 

17(n, d, t:) or, simply, TJ· Thus at = ai + TJ- ¥ ± ~-

THEOREM A. Lett1 = t1(n,d,t:) =min {2la+TJI,2Ia+TJ+~II a E Z}. Then 
I ( c, t) is irreducible and unitary if and only if t < h. 

PROOF. The Lemma shows that I(t:, t) is both irreducible and unitary if and 
only if (5) holds for all i = 1, · · · , nand all integers ai. It is easy to see that the 
minimum value ofright side of (5) ish- D 

REMARK. We can make Theorem A still more explicit as follows: Let 8 = 
~ -l2c -II- If dis even, then h = ~ ± 8 accordingly as ~(n + 1) is odd or even; 
if d is odd, then h = 181 or ~ - 161 accordingly as n is even or odd. 

The remark follows from an easy calculation once we note that c E [0, 1). 

THEOREM B. Supposed is even and p + q = n. I(t:, t) has a constituent of 
type Vp,q if and only if 

(0) one of 17 ± ~ is an integer. 
This constituent is unitarizable if and only if at least one of the following condi-
tions holds: 

( 1) t is an integer; 
(2) t = t1 or, equivalently t < 1; 
(3) p = 0 and 17 + ~ is an integer. 
(4) q = 0 and TJ- ~ is an integer. 

PROOF. First consider the situation when both p and q are positive. 
If t is an integer, and a is a K-type of Vp,q, then (0) implies that the four 

numbers a;=_q, a;=+l are all integers. Definition 3 implies that a;;_q ~ 0 and 
a:+l :S 0. Thus at ~ 0 for i :S p and at :S 0 for i > p, and so the unitarity 
follows from the Lemma. 

If t is not an integer, then exactly one of at, say ai, is an integer for all i. 
Now as discussed in the proof of Theorem 4, we can find a K-type in Vp,q whose 
first p coefficients are large and positive. Adding an integral multiple of /p+l we 
obtain a K-type a in Vp,q such that a;+l = -1. Now a:+l = a;+l + t = t -1. If 
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t > 1, this number is positive, and the Lemma shows that Vp,q is not unitary. On 
the other hand if t < 1, one can check that (0) implies that t = h, and another 
application of the Lemma proves the unitarity. The argument is similar if at is 
an integer for all i. 

Now suppose that p = 0, and t > 1. Arguing as above, we see that Vp,q is 
unitary if and only if at ~ 0 for all i and for every K-type o: of Vp,q· This 
happens if and only at is a (non-positive) integer for all o:. This leads to (3). 
The proof of ( 4) is similar. 0 

REMARK. We note that the representations in (1) were discussed in [S]; those 
in (2) correspond to the endpoints of complementary series; and those in (3) and 
( 4) are (limits of) holomorphic and anti-holomorphic discrete series. 

THEOREM B'. Supposed is odd and p + q = n. I(c:, t) has a constituent of 
type Vp,q if and only if 

(0) One of TJ ± ~ is an integer, and 2t is an odd integer. 

This constituent is unitarizable if and only if at least one of the following condi-
tions holds: 

(1) TJ- ~ - ~ is an integer; 
(2) t=t1(n,d,c:)=~; 
(3) p = 0 and TJ - ~ + ~ is an integer; 
(4) q = 0 and TJ- -n.f- ~ is an integer. 

PROOF. First assume that p and q are positive, and let o: beaK-type of Vp,q· 
Since d is odd, at and at+l cannot both be integers. Thus exactly one of the 
following two situations must hold: 

(a) a; and a;+l are integers. 
(b) at and a;+l are integers. 

These conditions are easily seen to be equivalent to (0) of the Theorem. 
Arguing as in the proof of Theorem B, we have unitarity in case (a), which 

corresponds to (1) of the present Theorem; and non-unitarity in case (b), unless 
t < 1. However, since 2t is an odd integer, the last condition implies t = ~, 
which corresponds to (2) of the Theorem. 

The argument for cases (3) and (4) is the same as in Theorem B. 0 

THEOREM B". Suppose d is odd and p + q = n + 1. I ( c:, t) has a constituent 
of type Vp,q if and only if 

(0) One of TJ- d(pil) ± ~ is an integer, and 2t is not an odd integer. 

This constituent is unitarizable if and only if at least one of the following condi-
tions holds: 

(1) t < ~ or, equivalently t = h; 
(2) p = 0 and TJ- ~ + ~ is an integer; 
(3) q = 0 and TJ- n2d - ~ is an integer. 
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PROOF. From Definition 3, it follows that a constituent of type Vp,q occurs 
exactly when one of a;+l is an integer, and a;+2 are both non-integral. Rewriting 
this gives (0). 

The argument for (2) and (3) is the same as before. So we assume that p and 
q are positive. Let a beaK-type of Vz,,q· Fori= p + 1, one of at is an integer, 
say at. Since dis odd, a; is in Z + !· 

Now Theorem 4 shows that ap can assume arbitrary integral values. In par-
ticular, we can arrange to have a; = ! . For Vp,q to be unitary, a; = ! - t must 
also be positive. Conversely if t < !, then (0) implies that t must equal t1. and 
the unitarity follows. 0 

THEOREM C. Suppose p + q < n. Then I(c, t) has a constituent of type Vp,q 
if and only if 1J- ~(p + 1)-! is an integer and t- ~(n -1- p- q) is a positive 
integer. 

(6) 

This constituent is unitarizable if and only if 

d 
t = 1 + -(n- 1-p- q). 

2 

PROOF. Let a beaK-type of Vp,q· By the definition of p and q, one of a;+l 
is a non-positive integer and one of a;=_q is a positive integer. Since p+ 1 :2:: n- q, 
the only way this can happen is if a;+l is the non-positive integer and a~-q is 
the positive integer. Rewriting this, we obtain the the first part of the Theorem. 

Suppose Vp,q is unitary. Now a;+l :2:: a~-q must be positive. Since ap can 
be arbitrarily large, the Lemma shows that a;+l cannot be negative, so it must 
be 0. Arguing similarly, a~-q must be equal to 1. Thus 1 = a;+l - a;;_q = 
~( -2(p + 1) + 2(n- q)) + t, which yields (6). 

On the other hand if (6) holds, then an easy calculation shows 0 :2:: a;+l = 
ap+l + c- ~(p- q). Similarly, 1 ~ a~-q = an-q + c- ~(p- q) + 1. Thus we see 
that ai + c :2:: ~(p- q) for i ~ n- q and that ai + c ~ ~(p- q) for i :2:: p + 1. 
Consequently, the K-types of the representation are 

d n 
{-4(p- q)p, + L Ci"fi I C1 :2:: • • • :2:: Cn E Z; Cp+l = · · · = Cn-q = 0}. 

i=l 

(7) 

The unitarity of Yp,q follows easily from the Lemma. D 

Appendix. 
In this appendix we complete the proof of Lemma 3 using some elementary 

facts from the theory of generalized Verma modules. A convenient reference for 
this section is [FK). 

Let c be an integer and let c be in [0, 1) as usual. Write t/J for the !-dimensional 
t-type t/J = cp, + cJ.L, let M(t/1) = U(g) ®u(t+p+) C.p be the corresponding gener-
alized Verma module, and let L( t/J) be its unique irreducible quotient. 
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LEMMA A. Ift = t(c,e) = 2(c+:e + d(n;l) +~),then L(.,P) occurs as a 
subquotient of I(e, t). 

PROOF. It suffices to show that 11'e,t(P+)Vc,_. = 0. Clearly 11'e,t(P+)Vc,.. ~ 
Vc,..+"ft , and arguing as in the proof of the first part of Lemma 3, we see that 
for t = t( c, e), cp. is lower than cp. + "Yl in the Jantzen filtration. Consequently 
11'e,t(P+)Vc,_. = 0. D 

Let c be fixed. Then it is well known that for "most" e, M ( 1/J) = M ( CJ.L + e J.L) 
is irreducible. (For an exact statement see Theorem 5.3 in [FK].) On the other 
hand, if a, f3 and t0 (a, i, e) are as in the proof of Lemma 3, then by suitably 
choosing e and c > > a1 we may arrange to have 

Va, Vp ~ M(.,P) = L(.,P) ~ I(e,t(c,e)) 

and at the same time ensure that t(c,e) =f. ±t0 (a,i,e). 
This reduces the proof of Lemma 3 to a corresponding result about Verma 

modules, which we shall prove after introducing some necessary notation. 
As in [FK], we may realize M ( 1/J) on the space P of polynomials on p+. (This 

is related via the Cayley transform (as in [S]) to the realization inside I(e, t).) 
The Lie algebra p+ acts by constant coefficient vector fields. 

The t-weights of p+ are ~hi+ "Y;) and "Yi• and the latter have !-dimensional 
weight spaces. Choose weight vectors Xi in the "Yi-weight spaces and extend these 
to a basis of p+ consisting oft-weight vectors. If Zi is the coordinate function 
for the "Yi-weight vector, then xi acts on p by ai = 8/ozi. 

Let 'Pi be the polynomial functions described in [KS] (and denoted by ~i in 
[FK]). Then polynomials of the form 

(8) 

constitute the totality of lowest weight vectors in the various t-types of M(.,P). 
Such a p hast-weight 

(c + e)J.L- [(dl + ... + dnhl + (d2 + ... + dnh2 + ... + dn"Ynl· 

The highest weight vector in that t-type has weight 

(c + e)J.L- [dn"Yl + (dn-1 + dnh2 + ... + (dt + ... + dnhnl· 

Let a= a1"Y1 +· · ·+an"Yn and f3 be as in (1), (3) and Lemma 3. Since c >> a1 
and ai-l > ai (see (3)), we can choose integers d1, ... ; dn so that if p is as in 
(8), then v = 'PiP and w = 'Pi-lP are lowest weight vectors in Va = M('I/J)a+e 
and Vp = M(.,P)p+e respectively. 

We recall next the positive definite, K-invariant, Fischer inner product on 
P = M(.,P) defined as in (§3 of [FK]) by (pI q) = (8(p) ·Q)Iz=O• where q(z) = q(z). 

We leave it to the reader to verify the following simple facts: 

(i) lPi = 'Pi 
(ii) 8i · 'Pi = 'Pi-t and ai · 'Pk = 0 for k < i. 

(iii) (8(r). pI q) =(pI rq) for all p, q, r in P. 
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LEMMA B. (8;. (r.p;p) I 'Pi-lP) # 0. 

PROOF. If Dj(m) is the differential operator 8(r.pj)m o r.pj and q is a lowest 
weight vector of the form r.p~ 1 • • • r.p~k with k ~ j, then Dj(m) · q is a multiple of 
q. Moreover, from (i) and (iii) above, and the definiteness of the form, it follows 
that this multiple is not zero. 

Applying this remark and (iii) repeatedly, we see that (8i · (r.p;p) I 'Pi-lP) is 
a non-zero multiple of ( 8i · ( r.p;p') I 'Pi-lP') where p' = r.pt1 • • • r.pt'_11 • Now (ii) 
shows that 8i ·('PiP')= 'Pi-lP', and the Lemma follows by the definiteness of the 
form. D 

PROOF OF LEMMA 3. Choose c, c and t = t( c, c) as above. Also let v = r.p;p 
in Va and w = 'Pi-lP in V13 be as before, and set X =X; in p+. Then Lemma B 
shows that 1l"e:,t(X)v is not orthogonal tow. In particular, Px,v(c, t(c, c)) # 0. D 
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