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THE CAPELLI IDENTITY FOR GRASSMANN MANIFOLDS

SIDDHARTHA SAHI

Abstract. The column space of a real n× k matrix x of rank k is a k-plane.
Thus we get a map from the space X of such matrices to the Grassmannian G
of k-planes in Rn, and hence a GLn-equivariant isomorphism

C∞ (G) ≈ C∞ (X)GLk .

We consider the On ×GLk-invariant differential operator C on X given by

C = det
(
xtx

)
det

(
∂t∂

)
, where x = (xij) , ∂ =

(
∂

∂xij

)
.

By the above isomorphism C defines an On-invariant operator on G.
Since G is a symmetric space for On, the irreducible On-submodules of

C∞ (G) have multiplicity 1; thus On-invariant operators act by scalars on
these submodules. Our main result determines these scalars for a general class
of such operators including C. This answers a question raised by Howe and Lee
[9] and also gives new Capelli-type identities for the orthogonal Lie algebra.

1. Introduction

1.1. The classical Capelli identity. Let {zij : 1 ≤ i, j ≤ n} be n2 variables and
let ∂ij = ∂

∂zij
be the corresponding partial derivatives. Consider the n×n matrices

z = (zij) and ∂ = (∂ij). The classical Capelli identity [3] is the following identity
of differential operators

(1.1) det (z) det (∂) = det
(
zt∂ + (n− i) δij

)
.

Here δij is the Kronecker δ function, and the (noncommuting) determinant on right
is defined as follows:

det (aij) =
∑
w∈Sn

sgn (w) aw(1),1 · · · aw(n),n.

This identity plays a key role in the work of Herman Weyl [20] and others on
classical invariant theory. It has also appeared more recently in the work of Atiyah-
Bott-Patodi [1] on the index theorem. We refer the reader to ([7], [2]) for a discus-
sion of the background of this identity. In the early 90s, the identity was generalized
considerably by B. Kostant and the author ([13], [14], [19]) and by Howe-Umeda
[10] to the context of Jordan algebras and multiplicity free actions. Since then there
has been considerable interest in generalizations of Capelli-type identities, we refer
the reader to ([4], [11], [12], [15], [16], [17], [18]) and to the references therein.
The representation-theoretic meaning of (1.1) was explained in [7]. The polyno-

mial algebra C [zij ] is the affi ne coordinate ring of the spaceMn,n of n×n matrices.
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The group GLn×GLn acts on Mn,n by left and right multiplication, and hence we
get a representation π on C [zij ]. The operator det (z) det (∂) on the left of (1.1) is
a GLn×GLn invariant differential operator on C [zij ] . It follows from (GLn, GLn)
duality [7] that such an operator is necessarily of the form π (Ω) for some element
Ω in the center of the enveloping algebra of gln⊕gln. Note however that the ele-
ment Ω is not unique, and the expression on the right of (1.1) merely identifies one
possible choice of Ω. Indeed the entries of the matrix (zt∂)ij =

∑
p zpi∂pj come

from the right action of GLn alone, and one can find other similar expressions in
terms of the matrix entries of the left action (z∂t)ij =

∑
p zip∂jp, or the diagonal

action (z∂t − zt∂)ij etc.
There is however an associated eigenvalue problem that does admit a unique

answer. Again by (GLn, GLn) duality, or in this case by the Peter-Weyl theorem,
one knows that Pn,n decomposes as a direct sum of GLn × GLn-modules Pn,n =⊕

λ

(
V λ ⊗ V λ

)
where λ ranges over partitions of length ≤ n and V λ is the GLn

representation with highest weight λ. By Schur’s Lemma det (z) det (∂) acts by a
scalar p (λ) on V λ ⊗ V λ and one may ask for an explicit formula for this scalar.
This turns out to have a rather pretty answer:

(1.2) p (λ) =

n∏
i=1

(λi + n− i) .

As explained in [13], the eigenvalue formula (1.2) implies (1.1) via the Harish-
Chandra homomorphism. Moreover this point of view leads to a much larger class
of identities in the context of Jordan algebras ([13], [14], [19]).

1.2. The Capelli identity for Grassmann manifolds. In [9] Howe and Lee
pose a similar eigenvalue problem in the context of Grassmannians. In order to
describe this problem we need some notation. Fix integers k, l with k < l and
write n = k + l. Let G = Gn,k denote the Grassmannian of k planes in Cn, and
let R =

⊕∞
m=0Rm be its homogeneous coordinate ring. The ring R admits an

explicit description via the Plücker imbedding that we now recall briefly, referring
the reader to [5, Ch. 9] for details. Let P =C [z11, . . . , znk] be the coordinate ring
of the space Mn,k of n× k matrices, regarded as a GLn ×GLk-module. Then R is
the subalgebra of P generated by the determinants of k × k minors. Alternatively
we have

R = PSLk ,Rm = P(GLk,detm)

with the usual notation for invariants and equivariants for the right action ofGLk on
Mn,k. This description also shows that each Rm is naturally a module under the
left action of GLn. By (e.g. [7]) Rm has a multiplicity-free On-decomposition

Rm =
⊕

µR
µ
m

and the occurring summands are indexed by partitions of length ≤ k, whose parts
are less than m and have the same parity as m. In other words, µ ranges over
integer sequences µ = (µ1, · · · , µk) satisfying

m ≥ µ1 ≥ · · · ≥ µk ≥ 0, µi ≡ m (mod 2) for all i.

Consider now the n× k matrices z = (zij) and ∂ =
(

∂
∂zij

)
, and define

γ (z) = det
(
ztz
)
, L = det

(
∂t∂
)
.
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The differential operator L and the multiplication operator γ are On-invariant and
transform under GLk by the characters det−2 and det2 respectively. Thus they
define maps

(1.3) γ : Rµm → R
µ
m+2, L : Rµm → R

µ
m−2.

It follows that for any two integers d, d′ ≥ 0, the operator

(1.4) Cd,d′ = γd ◦ Ld+d′ ◦ γd
′

is an On-invariant operator on Rµm. By Schur’s lemma Cd,d′ acts by a scalar on
Rµm, and Howe-Lee [9] ask for an explicit formula for these scalar eigenvalues. To
be precise they consider only the operator Lγ = C0,1, but the general case is not
much more diffi cult as we explain below. For k = 1 the problem reduces to the
classical theory of harmonic polynomials, and Howe-Lee [9] solve the problem for
k = 2 by an explicit calculation. Their calculation is elementary but fairly intricate
and it is unclear how to extend it for k ≥ 3.
In this paper we solve the eigenvalue problem for all k using completely different

methods. Let us define the following k-tuple of rational numbers

(1.5) ρ = (ρ1, . . . , ρk) ∈ Qk, ρi =
n

2
− i.

Also let s and τ = (τ1, . . . , τk) be k + 1 indeterminates and define polynomials

(1.6) q1,0 (s, τ) =

k∏
i=1

(
s2 − τ2

i

)
, qd,d′ (s, τ) =

d+d′−1∏
j=0

q1,0 (s+ 2d′ − 2j, τ) .

Our main result is as follows:

Theorem 1.1. Cd,d′ acts on Rµm by the scalar qd,d′ (m+ ρ1, µ+ ρ).

Specializing to k = 2, d = 0, d′ = 1, we see that q0,1 (m+ ρ1, µ+ ρ) equals

(m− µ1 + 2) (m+ µ1 + n) (m− µ2 + 3) (m+ µ2 + n− 1) ,

which agrees with Theorem 6.1 of [9], using formulas on [9, P. 356] for λ = µ.
We now briefly sketch the proof of Theorem 1.1. In the next section, we

reduce the problem to the special case of the operator C = C1,0 = γL, and
prove a simple lemma about the kernel of C. We also explain how to imbed
the problem into the more general real analytic setting of the symmetric space
Y = SOn (R) / [SOk (R)× SOl (R)]. The operator C gives rise to a family of in-
variant operators Cs on Y . The structure of invariant differential operators on a
symmetric space is given by the Harish-Chandra homomorphism. In sections 3 and
4 we recall this theory and specialize it to Y . In section 5 we prove the eigenvalues of
Cs are given by a polynomial function with suitable symmetry properties. Finally
in section 6 we show that this polynomiality result, combined with the knowledge
of the kernel of C proves Theorem 2.1 up to an overall constant, which we then
prove to be 1 by an auxiliary computation.
In the appendix, we combine the results of this paper with those of [11] and

[15] to obtain identities of invariant differential operators on the symmetric space
SO (p+ q) /SO (p)× SO (q) . The main theorem also leads to a new inversion for-
mula for the Radon transform on Grassmannians, which we plan to discuss in a
subsequent paper.



4 SIDDHARTHA SAHI

2. Reduction of the problem

We first explain how deduce Theorem 1.1 from a special case. Define

C = C1,0 = γL.

Theorem 2.1. C acts on Rµm by the scalar q1,0 (m+ ρ1, µ+ ρ).

Proof of Theorem 1.1. We abbreviate q (m) = q1,0 (m+ ρ1, µ+ ρ). If v in Rµm then
γd

′
v ∈ Rµm+2d′ , and by Theorem 2.1 we get

L
(
γd

′
v
)

= q (m+ 2d′) γd
′−1v.

Iterating this we get

Ld+d′γd
′
v =

[∏d+d′−1

i=0
q (m+ 2d′ − 2i)

]
γ−dv.

We multiply both sides by γd to get the result. �

We now sketch the proof of Theorem 2.1. The following simple result on the
kernel of C plays a key role.

Lemma 2.2. If µ1 = m then C acts by 0 on Rµm.

Proof. As noted above L : Rµm → R
µ
m−2. If µ1 = m then Rµm−2 = 0, thus L acts

by 0 on Rµm and so does C = γL. �

In the next few sections we establish some general results about the eigenvalues of
operators such as C, which enable us to deduce Theorem 2.1 from the above lemma.
The key result is Proposition 3 below, which says that these eigenvalues are given
by a polynomial function in the parameters m,µ with certain symmetry properties.
In order to prove this proposition, it is important to extend the eigenvalue problem
to a larger real analytic setting that we now explain.
The (holomorphic) polynomials in P and R are determined by their restrictions

to the space Mn,k (R) of real n× k matrices, and even to the open subset

X = M ′n,k (R)

of rank k matrices. We will write xij for the (real) coordinate functions onMn,k (R)
and X, and regard P and R as spaces of polynomials in xij . Similarly we write
∂ij = ∂

∂xij
consider the restrictions of the various differential operators

x = (xij) , ∂ = (∂ij) , γ (x) = det
(
xtx
)
, L = det

(
∂t∂
)
, C = γL.

Let H = GL+
k (R) = {g ∈ GLk (R) | det g > 0} and define

Y = X/H.

The left action of the group SOn (R) on Y is transitive and allows one to identify
Y with the compact symmetric space SOn (R) / [SOk (R)× SOl (R)]. The general
structure of invariant differential operators on such a space is well understood, and
we briefly recall the main ideas below.
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3. Differential operators on symmetric spaces

In this section we briefly recall some well-known results on compact symmetric
spaces, referring the reader to [6] for details and proofs.
Let K be a connected compact group with involution σ, let Kσ denote the σ-

fixed subgroup and let (Kσ)0 denote its identity component. A subgroup M of K
is said to be a symmetric subgroup if (Kσ)0 ⊂ M ⊂ Kσ, and in this case we say
that K/M is a symmetric space. In the case of interest to us M = (Kσ)0 so we
make this simplifying assumption in the subsequent discussion. Let k,m denote the
complexified Lie algebras ofK andM . The involution σ onK defines an involution,
still denoted σ, on k, and we obtain the corresponding Cartan decomposition

k = m+ s

into ±1 eigenspaces of σ. We fix a maximal abelian subspace a ⊂ s and let t denote
the centralizer of a in m. Then h = a+ t is a Cartan subalgebra of k. We let Σ ⊂ h∗
denote the root system of h in k, with Weyl group W = W (Σ), and fix a positive
subsystem Σ+. The irreducible representations of K are classified by their highest
weight λ ∈ Λ , where Λ ⊂ h∗ denotes the lattice cone of dominant integral elements.
The representations of K with anM -fixed vector are those for which the highest

weight µ belongs to the subcone Λ0 ⊂ Λ consisting of even integral elements that
vanish on t. Thus if H denotes the space of K-finite functions on K/M then we
have a multiplicity free decomposition into irreducible K-modules

H =
⊕

µ∈Λ0
Hµ.

It is convenient to work with the restricted root system Σ0 = Σ|a \ {0} ⊂ a∗, the
restricted Weyl group W0 and the positive subsystem Σ+

0 = Σ+|a ∩Σ0. We regard
Λ0 as a lattice contained in a∗ and we also define ρ ∈ a∗ by

ρ =
1

2

∑
α∈Σ+

0

mαα,

where mα denotes the multiplicity of the restricted root α.
Let D (K/M) denote the algebra of K-invariant differential operators on K/M .

Then one has an isomorphism, the Harish-Chandra isomorphism

D0 7→ ΓD0
: D (K/M)→ I (a) ,

where I (a) ≈ S (a)
W0 denotes the algebra ofW0-invariant elements in the symmet-

ric algebra S (a). We regard S (a) and I (a) as spaces of the polynomial functions
on a∗, and we write Id (a) ⊂ I (a) for the space of invariant polynomials of degree
≤ d. The key property of the Harish-Chandra homomorphism is as follows:

Proposition 1. If D0 ∈ D (K/M) has order ≤ d, then ΓD0 ∈ Id (a). Moreover
D0 acts on Hµ by the scalar ΓD0 (µ+ ρ).

4. Differential operators on Grassmannians

We specialize the results of the previous section to the case

K = SOn (R) ,M = SOk (R)× SOl (R) , Y = K/M,

assuming as before that n = k+ l and k < l. In this case the restricted root system
is of type Bk and we choose the usual positive subsystem

Σ0 = {±ei ± ej ,±ej} ,Σ+
0 = {ei ± ej | i < j} ∪ {ei} ,
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where e1, . . . , ek are the unit vectors in a∗ ≈ Ck. The root multiplicities are 1 for
ei ± ej , and (l − k) for ej . Thus we get

ρ =
1

2

∑
i

[2 (k − i) + (l − k)] ei =
∑
i

[n
2
− i
]
ei,

which we note agrees with formula (1.5). The lattice cone Λ0 consists of integer
k-tuples µ = (µ1, . . . , µk) satisfying

µ1 ≥ · · · ≥ µk ≥ 0, µi ≡ µj (mod 2) for all i, j.

TheWeyl groupW0 acts on Ck by sign changes and permutations of the coordinates.
Thus

W0 ≈ Sk n (Z/2)
k

and I = I (a) is the ring of polynomials in k variables, invariant under permutations
and sign changes. Now Proposition 1 specializes as follows:

Proposition 2. Let D0 ∈ D (Y ) be an SOn (R)-invariant differential operator of
order ≤ d, then D0 acts on the space Hµ by the scalar ΓD0

(µ+ ρ), where ΓD0
(τ) is

a polynomial of degree ≤ d in k variables τ = (τ1, . . . , τk) which is invariant under
permutations and sign changes.

5. Twisted differential operators

We continue with the notation K = SOn (R) ,M = SOk (R) × SOl (R) and
Y = K/M as in the previous section, and also recall from section 2 that

X = M ′n,k (R) , H = GL+
k (R) , Y = X/H.

Let D be a K×H invariant differential operator of order d on X. Then D descends
to a K-invariant differential operator D0 on Y = K/M, whose Harish-Chandra
image ΓD0

belongs to the space Id = {p ∈ I | deg (p) ≤ d}. Now the function
γ = det (xtx) is strictly positive on X, hence for any real (or complex) number s,
we can consider the twisted differential operator γ−s ◦D ◦ γs, which descends to a
K-invariant differential operator Ds on Y .

Theorem 5.1. If D is a K × H invariant differential operator of order ≤ d on
X, then the map pD : R → Id defined by pD (s) = ΓDs

is a polynomial map in
s of degree ≤ d. More precisely, there exist elements cj = cj,D ∈ Ij such that
pD (s) =

∑d
j=0 cjs

n−j.

For the proof we need the following simple result:

Lemma 5.2. Let V be a finite dimensional vector space and let p : R→V be a
smooth function such that for all t, p (s+ t)−p (s) is a polynomial of degree ≤ d−1
in s. Then p is a polynomial function of degree ≤ d.

Proof. Taking the dth order partial derivative of p (s+ t)− p (s) with respect to s,
we deduce that for all s, t

p(d) (s+ t)− p(d) (s) = 0.

Substituting s = 0, we conclude that p(d) (t) = p(d) (0) is a constant for all t. It
follows that p(d+1) (t) = 0, whence p must be a polynomial of degree ≤ d. �
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Proof of Theorem 5.1. We proceed by induction on d. The result is clear for d = 0,
since an operator of order 0 is multiplication by a function, which by virtue of
K ×H-invariance reduces to a constant, and hence belongs to I0. We now assume
that d > 0 and that the result holds for all invariant operators of order ≤ d − 1.
Fix t ∈ R and define

D′ = γ−t ◦D ◦ γt −D = γ−t
[
D, γt

]
.

Then D′ is invariant by the first expression and is of order ≤ d − 1 by the last
expression. Therefore by induction pD′ (s) is a polynomial function of degree ≤ d−1
taking values in Id−1. However D′s = Ds+t −Ds and so

pD′ (s) = ΓDs+t
− ΓDs

= pD (s+ t)− pD (s) .

Thus we conclude that for all t, pD (s+ t)−pD (s) is a polynomial of degree ≤ d−1
in s. From the definition, it is easy to see that pD (s) is a smooth function of s. It
follows from the previous lemma that pD is a polynomial of degree ≤ d in s.
Thus we have an expression pD (s) =

∑d
j=0 cjs

d−j with cj ∈ Id and it remains
to show that cj ∈ Ij for all j ≤ d − 1. We proceed once again by induction on d.
The case d = 0 follows as in the previous paragraph. Let us consider the expansion
of h (s) = pD (s+ 1)− pD (s)

h (s) =

d−1∑
j=0

c′js
d−1−j =

d∑
j=0

cj (s+ 1)
d−j −

d∑
j=0

cjs
d−j .

It follows that c′j = (d− j) cj+ a combination of ck for k < j. Inverting this we
deduce that for j ≤ d− 1, we have

cj =
1

d− j c
′
j + a combination of c′k for k < j.

Now as explained in the previous paragraph, the polynomial h is of the form pD′′

for the invariant operator D
′′

= γ−1 ◦ D ◦ γ − D of degree d − 1. Therefore by
induction c′j ∈ Ij for all j ≤ d− 1, and by the above expression for cj we conclude
cj ∈ Ij as well. �
Proposition 3. If D is a K × H invariant differential operator of order ≤ d on
X, then there is a polynomial pD (s, τ) of total degree ≤ d such that Ds acts on Hµ
by the scalar pD (s, µ+ ρ). Moreover pD is invariant under permutations τi ↔ τj
and sign changes τi → −τi.

Proof. This follows by combining Theorem 5.1 and Proposition 2. �

6. Proof of Theorem 2.1

We apply the result of the previous section to the invariant differential operator
C = C1,0 = det (xtx) det (∂t∂), which has degree 2k. By the previous proposition
there exists a polynomial pC (s, τ) of degree ≤ 2k such that Cs acts on Hµ by the
character pC (s, µ+ ρ).

Proposition 4. C acts on Rµm by the character pC
(
m
2 , µ+ ρ

)
.

Proof. Let f ∈ Rµm, then γ−m/2f is H-invariant, hence γ−m/2f ∈ Hµ. Evidently
γ−sC = Csγ

−s, thus by the previous corollary we get

γ−m/2Cf = Cm/2

[
γ−m/2f

]
= pC

(m
2
, µ+ ρ

) [
γ−m/2f

]
.
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Multiplying both sides by γm/2 we get the desired result. �

In view of the above result, let us define

(6.1) q (s, τ) = pC

(
s− ρ1

2
, τ

)
.

Then by the previous proposition C acts on Rµm by the scalar q (m+ ρ1, µ+ ρ),
and Theorem 2.1 reduces to showing the following result.

Theorem 6.1. We have q = q1,0.

We will prove this in two stages.

Proposition 5. There is a constant a such that q = aq1,0.

Proof. Dividing q by s− τ1 we obtain an expression

(6.2) q (s, τ) = (s− τ1)h (s, τ) + r (τ) .

Let µ ∈ Λ0 be arbitrary, then Lemma 2.2 implies that C acts on Rµm by 0 for
m = µ1. Thus we get

q (µ1 + ρ1, µ+ ρ) = 0.

Substituting s = µ1 + ρ1 and τ = µ + ρ in formula (6.2) we deduce that for all
µ ∈ Λ0

r (µ+ ρ) = 0.

Now it is easy to see by induction on k that the set Λ0 +ρ is Zariski dense in Ck. It
follows that r (τ) is identically 0, and thus (s− t1) divides q. Since pC and hence
q are invariant under permutations τi ↔ τj and sign changes τi → −τi, it follows
that (s± τi) divides q for all i. Thus q1,0 =

∏k
i=1

(
s2 − τ2

i

)
divides q, but since

deg q ≤ 2k we must have q (s, τ) = aq1,0 for some constant a. �

Now Theorem 2.1 reduces to proving a = 1. For the proof we need a simple
result on polynomials. In order to formulate and prove this result is convenient to
proceed in somewhat greater generality, thus we temporarily introduce the following
notation:

x = (x1, . . . , xn) , ∂i = ∂/∂xi, ∂ = (∂1, . . . , ∂n) .

Let g (x) be a polynomial, let s be an additional variable and define gs (x) = [g (x)]
s,

considered as an analytic function on a suitable open set in (x, s). Let f (x) be
a homogenous polynomial of degree d and regard f (∂) as a constant coeffi cient
differential operator of order d. We apply f (∂) to gs and then multiply the result
by gd−s to obtain the expression

gd−s (f (∂) gs) .

It is easy to see that this expression is a polynomial in (x, s). We now have the
following result where we use the symbol ∼ to denote equality modulo lower degree
terms in s.

Lemma 6.2. In the setting of the previous paragraph, we have

gd−s (f (∂) gs) ∼ sdf (∇g) ,

where ∇g = (∂1g, . . . , ∂ng) denotes the gradient of g.
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Proof. It suffi ces to prove the result when f is a monomial. Thus we need to show
that

gd−s [∂i1 · · · ∂idgs] ∼ sd (∂i1g) · · · (∂idg) ,

which follows easily by the chain rule and induction on d. �

We now return to the general discussion.

Proposition 6. The constant a in Proposition 5 is 1.

Proof. Let 1 denote the constant function in H0. By the previous proposition we
have

(6.3) Cs1 = q (2s+ ρ1, ρ)1 = aq1,0 (2s+ ρ1, ρ)1 ∼
(
a4k
)
s2k1.

On the other hand, recalling the definition of Cs, we get

(6.4) γ2k−1 [Cs1] = γ2k−s [det
(
∂t∂
)

(γs)
]
∼ s2k det

(
yty
)
,

after applying the pevious lemma and writing y = ∇γ.
Now multiplying (6.3) by γ2k−1 and comparing with (6.4) we get

(6.5) s2k det
(
yty
)
∼ s2k

(
a4k
)
γ2k−1.

Let Ik denote the k × k identity matrix, and let J denote the n × k matrix
[
Ik
0

]
,

then we have J tJ = Ik, γ (J) = 1. Moreover an easy calculation shows that

y (J) = ∇γ (J) = 2J.

Thus evaluating both sides of formula (6.5) at x = J we get

det (4Ik) s2k ∼
(
a4k
)
s2k.

Since det (4Ik) = 4k, this proves a = 1 as desired. �

As noted above, this proves Theorem 6.1 and hence Theorem 2.1.

7. Appendix

We apply the results of this paper to obtain identities in the algebra D (Y ) of
K-invariant differential operators on the symmetric space Y = K/M , where

K = SOn (R) ,M = SOk (R)× SOn−k (R) .

As noted in section 5 above we may also write Y = X/H, where

X = M ′n,k (R) , H = GL+
k (R) .

Thus if D is a K × H invariant differential operator on X, then for any real (or
complex) number s, the twisted differential operator γ−s ◦ D ◦ γs descends to an
operator Ds in D (Y ). This applies in particular to the element Cd,d′ = γd ◦Ld+d′ ◦
γd

′
in (1.4), and we write

Cd,d′,s = γ−s ◦ Cd,d′ ◦ γs = γd−s ◦ Ld+d′ ◦ γd
′+s.

On the other hand if z belongs to the center Z (k) of the enveloping algebra U (k)
of k = so (n), then z gives rise to an operator D (Y ) as well. A number of authors
have given explicit construction of elements in Z (k). In particular we refer the
reader to [11, Sections 6,7] for a certain element D† (λ) = DF (λ) ∈ Z (k) defined in
terms of a noncommuting determinant, and shown in [11, P. 487] to coincide with
another element constructed in terms of the Sklyanin determinant in [15].
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Theorem 7.1. The following identity holds in D (Y )

Cd,d′,s = ad,d′ (s)

d+d′−1∏
j=0

D† (2 (s+ d′ − j) + n/2− 1) ,

where ad,d′ (s) is a certain explicit constant.

Proof. Writing C = C1,0 = γ ◦ L and Cs = γ1−s ◦ L ◦ γs we have a factorization

Cd,d′,s = Cs−d+1 . . . Cs+d′ =

d+d′−1∏
j=0

Cs+d′−j .

Thus it suffi ces show that for some explicit constant a (s) one has

(7.1) Cs = a (s)D† (2s+ n/2− 1) .

As before let H denote the space of K-finite functions on K/M , and let H =⊕
µ∈Λ0

Hµ denote its (multiplicity-free) decomposition into irreducible K-modules.
It suffi ces to show that the two sides of (7.1) agree on each Hµ. Let ρi = n/2 − i
as before, then by (6.1) in section 6, Cs acts on Hµ by the scalar

(7.2) pC (s, µ+ ρ) = q (2s+ ρ1, µ+ ρ) =
∏k

i=1

[
(2s+ ρ1)

2 − (µi + ρi)
2
]
.

Now the action of D† (λ) on Hµ is given via the Harish-Chandra homomorphism
γ̄ : Z (k)→ S (h) ,

where h is a maximal toral subalgebra in k, followed by evaluation at

(µ1 + ρ1, . . . , µk + ρk, ρk+1, . . . , ρp) ,

where p = bn/2c . By Theorem 7.2 of [11] we see that D† (λ) acts on Hµ by∏p
i=k+1

(
λ2 − ρ2

i

)∏k
i=1

[
λ2 − (µi + ρi)

2
]

if n is even,

(λ− 1/2)
∏p
i=k+1

(
λ2 − ρ2

i

)∏k
i=1

[
λ2 − (µi + ρi)

2
]
if n is odd.

Comparing this with (7.2) we obtain (7.1), which implies the result. �
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