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0. Introduction

Nonnegative matrices arise naturally in many applications and mathematical results about them

can lead to fundamental insights. We mention two examples from economics: (i) application of

Perron–Frobenius theory [13] to the Leontiefmodel of an economy [8,7,2]; (ii) application of geometric

convexity [11] to strategic market games [1,5,12].

In this paper we prove a conjecture of Dubey et al. [4] on the resolvent of a nonnegative matrix,

which was motivated by their analysis of competition in social networks such as the internet [3]. In

addition to the game-theoretic context of [3], we provide a second application of our main result to
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the open Leontief model. It is our hope and expectation that the reader will find our result useful in

other contexts as well.

1. The main result

We need some notation in order to state our main result. The resolvent of an n × n matrix X is

the matrix R(z, X):=(X − zI)−1 defined for all scalars z outside the set SX of eigenvalues of X . It

was introduced by Fredholm in his seminal paper on operator theory [6] and played a key role in

subsequent work of Hilbert and von Neumann. We consider here a slight variant of the resolvent,

Y(t, X):=(I − tX)−1; this admits a power series expansion

Y (t, X) = I + tX + t2X2 + · · · , |t| < 1/rX , (1)

where rX := max{|λ| : λ ∈ SX} is the spectral radius of X . Note that by (1) if X is nonnegative and

0� t < 1/rX then Y(t, X) is also nonnegative.

Theorem 1. Suppose X′ = (x′
ij) is a nonnegative matrix obtained from X = (xij) by decreasing a single

entry xhk. Then for all indices i, j and for all t in [0, 1/max(rX , rX′)), the entries of Y :=Y(t, X) and

Y ′ :=Y(t, X′) satisfy:
yijy

′
ik � y′

ijyik and yijy
′
hj � y′

ijyhj. (2)

Proof. It suffices to prove the first inequality in (2), since the second then follows by transposing X .

Also note that, replacing X, X′ by tX, tX′ if necessary, we may assume without loss of generality that

t = 1, so that (1) becomes

Y = I + X + X2 + · · · (3)

Now the matrix entries of the various powers of X are given as follows:
(
X2

)
ij

= ∑
p

xipxpj,
(
X3

)
ij

= ∑
p,q

xipxpqxqj, . . .

Therefore by (3) we deduce that the entries of Y are given by

yij = ∑

α∈A

xα ,

where A is the set of all finite sequences of indices that start at i and end at j, and xα denotes the

corresponding product of matrix entries as follows:

x(i,i1 ,...,im−1 ,j)
∼= xi,i1xi1 ,i2 . . . xim−1 ,j.

[For the single term sequence (i), x(i) is the empty product 1.]

With analogous notation we have

y′
ij = ∑

α∈A

x′
α , yik = ∑

β∈B

xβ , y
′
ik = ∑

β∈B

x′
β ,

where B is the set of all finite sequences that start at i and end at k. Thus the assertion (2) of the theorem

can be reformulated as follows∑

(α,β)∈A×B

xαx
′
β �

∑

(α,β)∈A×B

x′
αxβ. (4)

While for all (α,β) we do have x′
β � xβ and x′

α � xα , it does not follow, nor indeed is it true, that

xαx
′
β � x′

αxβ . Therefore an argument is required to establish (4).We adopt the following strategy: since

the sums in (4) are absolutely convergent, they are invariant under rearrangement, and it suffices to

exhibit a bijection (α,β) �→ (ᾱ, β̄), from the set A × B to itself, such that

xαx
′
β � x′̄

αxβ̄ (5)
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Given (α,β) ∈ A × B we consider two cases. If the sequence α does not contain the index k

then we put (ᾱ, β̄) = (α,β). However if α does contain k, then we define β̄ by stripping off from

α all the indices after the last occurrence of k, and we define ᾱ by appending these stripped-off

indices to β .

This map is its own inverse, hence a bijection, and it remains only to verify (5). To this end

we note that since X′ and X agree in all columns other than column k, we have x′
pq = xpq if q /=

k. Hence if γ is any sequence that does not contain k, except perhaps as its first term, then we

have

x′
γ = xγ .

In the first case (ᾱ, β̄) = (α,β), we have xα = x′
α because α does not contain k, and (5) follows

since x′
β � xβ̄ . In the second case, the two sides of Eq. (5) are actually equal because they differ only in

the treatment of the stripped-off indices, which do not include k.

2. Applications

2.1. The Google Page-rank model

Dubey et al. [3] consider a class of non-cooperative games involving firms that compete for cus-

tomers inasocialnetwork. For simplicityweshall restrictourselves toadiscussionof their “quasilinear”

model,which is a simplifiedversionof theGoogle Page-rankmodel of internetusage, butwhichalready

contains many essential features of the general class.

This model involves a discrete Markovian birth–death process that is specified by a nonnegative

vector v = (vi) and a nonnegative matrix X = (xij). Here vi represents the number of births (initial

visits) per unit time in site i, and xij is the transition probability from site j to site i. The matrix X

is column-substochastic
(∑

i xij < 1
)
since there is a positive probability of death (logging off). The

steady state vector p (Page-rank) satisfies p = v + Xp, whence we get

p = (I − X)−1 v.

By the Perron–Frobenius theorem (see [13]), the spectral radius of a substochastic matrix is less

than 1. Therefore Y = (I − X)−1 is a nonnegative matrix given by (3) and Theorem 1 is applicable.

Suppose X is obtained from X by increasing some entries in column k of X while maintaining

substochasticity; and let Y = (I − X)−1. Assume that X, X are irreducible [13, Definition 1.6], then Y, Y

are strictly positive and our main result has the following consequence, which was conjectured by

Dubey et al.

Corollary 2. The following inequality holds for all (i, j):

yik

yij
�

yik

yij
. (6)

Proof. First suppose that only a single entry of X , say xhk , has been increased. Then (6) is equivalent

to the first inequality in (2), albeit with X replaced by X and X′ replaced by X . For the general case of

(6), we simply increase the entries of column k one at a time, and iterate (2).

2.2. The open Leontief model

The open Leontiefmodel of an economy [2,7,8,13] dealswith the case ofn industries eachproducing

exactly one good. The production of one unit of good j requires inputs xij � 0 of the other goods i. Goods

are measured in “dollars-worth” units, and one usually assumes that every industry runs at a profit,

i.e. it costs less than a dollar to produce one dollar’s worth of any good. This means that the technology

matrix X = (xij) is column-substochastic.
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In order to produce a vector p = (pi) of goods, the production process consumes Xp, leaving only

the excess vector c = p − Xp available for outside use. One thinks of c as a ‘demand’ vector and p as a

‘supply’ vector, and solving for p in terms of c one gets

p = (I − X)−1 c.

Since X is column-stochastic the spectral radius of X is less than 1, and Y = (I − X)−1 is a nonneg-

ative matrix given by (3). The ijth entry of Y is the partial derivative yij = ∂pi/∂cj and represents the

increase in supply of good i in response to a 1 unit increase in the demand of good j. We shall refer to

Y as the impactmatrix.

For simplicitywe shall also assume that there is sufficient interconnectivity among the goods under

consideration so that X is irreducible [13, Definition 1.6]. This implies that Y is strictly positive; hence

an increase in the demand of any one good leads to an increase in the supply of every good [2,7].

For the Leontief model our main result can be interpreted as describing the effect of a change in

technology. Suppose there is an improvement in the production technology of good k that reduces the

required input xhk of good h, then the new technology matrix X′ is as in the statement of Theorem 1.

It follows from (3) that the new impact matrix Y ′ = (I − X′)−1 is entrywise smaller than Y . The

impact reduction percentage is given by

rij :=100 ∗
(
yij − y′

ij

)
/yij (7)

and Theorem 1 implies the following property of the matrix R = (rij).

Corollary 3. The largest entry in any row of R occurs in column k. The largest entry in any column of R

occurs in row h.

Proof. For the first statement, we need to show that for all i /= k and all j, we have rkj � rij . By formula

(7) this is equivalent to y′
kj/ykj � y′

ij/yij , which in turn follows from thefirst inequality in (2). The second

statement of the corollary follows analogously from the second inequality in (2).

Appendix

We sketch here an alternative proof of Theorem 1, which was provided by the referee. This proof,

while shorter, is somewhat less self-contained, in that it relies on earlier results in the literature.

The first result is the Sherman–Morrison formula [10] for the inverse of a matrix after a rank 1

update. In the context of Theorem 1, assuming t = 1 without loss of generality, and writing α =
xhk − x′

hk , we get

y′
ij = yij − α

yihykj

1 + αykh
.

Using this formula, the first inequality in (2) reduces to showing

yijykk − yikykj � 0.

The quantity on the left is the determinant of an almost principal minor of the inverse M-matrix

Y , and is thus non-negative by a result of Markham [9]. The main ingredient in Markham’s result

(and indeed his proof) is the fact that a principal minor of an inverse M-matrix is itself an inverse M-

matrix, and thus has non-positive off-diagonal cofactors. The relevant fact about principal minors in

turn follows easily by examining the Schur complement in the formula for the inverse of a partitioned

matrix.
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