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In this paper, we consider translation and multiplication operators acting on the rings

of symmetric and nonsymmetric polynomials and study their matrix coefficients with

respect to the bases of Jack polynomials and interpolation polynomials. The main new

insight is that the symmetric and nonsymmetric cases share a key combinatorial feature,

that of a locally finite graded poset with a minimum element. This allows us to treat both

cases in a simple and unified manner.

1 Introduction

In this paper, we consider translation and multiplication operators acting on the poly-

nomial ring and study their matrix coefficients with respect to the bases of Jack poly-

nomials and interpolation polynomials.

Let F = Q (α) be the field of rational functions in a parameter α. The nonsym-

metric Jack polynomials [2, 8, 16] and interpolation polynomials [6, 19] are bases for the

polynomial ring F [x1, . . . , xn], respectively homogeneous and inhomogeneous, indexed by

the set Cn of compositions of length ≤ n. Their symmetric counterparts ( [4, 12, 13, 21]

and [7, 17]) are bases for the subring of symmetric polynomials, indexed by the set Pn of

partitions of length ≤ n.
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1.1 Uniform notation

A key observation in this paper is that the symmetric and nonsymmetric settings share

a key combinatorial structure described in Section 2.1; in each case the index set is a

locally finite graded poset with 0̂.

This enables us to formulate and prove our results in a unified manner. To this

end, we introduce the following notation: we write L for the index set (Cn or Pn) and R for

the corresponding polynomial ring (nonsymmetric or symmetric). We denote the partial

order on L by ⊇, its covering relation by :⊃, and the rank of r ∈ L by |r|. For r in L, we let

r ∈ Fn be as in formula (11) in Section 2.2.1.

The interpolation polynomial hs, defined in [6, 7, 17, 19], is the unique polynomial

of degree |s| in R such that

hs (r) = δrs for all r ∈ L with |r| ≤ |s| . (1)

The “extra vanishing” theorem in [7, Theorem 5.2] and [6, Theorem 4.5] shows

hs (r) = 0 unless r ⊇ s. (2)

The Jack polynomial gs is the homogeneous polynomial of degre |s| defined up to

a multiple by the formula

gs = ks [hs] ; (3)

here [hs] is the top degree part of hs, and ks is a constant that we fix by requiring

gs (1) = 1 where 1 = (1, 1, . . . , 1) . (4)

We note that the original definitions of the Jack polynomials in [4, 16] are quite different;

formula (3) is the key result of [6, 7].

Although Pn is a subset of Cn, the symmetric and nonsymmetric polynomials

indexed by an element of Pn are in general quite different. However, this ambiguity

will not be an issue because, while we treat the two cases in parallel, we do not con-

sider formulas that simultaneously involve both symmetric and nonsymmetric Jack

polynomials.
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1.2 Translation

We first consider the operator of translation by 1 in R, and write B = (brs) for its matrix

with respect to the Jack basis {gr : r ∈ L} so that

gr (x + 1) = ∑
sbrsgs (x) . (5)

Here and elsewhere, we write x = (x1, . . . , xn).

The coefficients brs are called binomial coefficients in [5, 11, 15, 20]. It was shown in [15,

Theorem 3.2] and [20, Corollary 1.9] that

brs = hs (r) . (6)

By formulas (1), (2), and (6), we have bss = 1 and that

brs = 0 unless r ⊇ s. (7)

The coefficients brs for r :⊃ s have been computed explicitly in [5, 14], see Section

2.5.2 below. Our first result is a formula for the other binomial coefficients in terms of

these. For this, we define a matrix A = (ars) as follows:

ars =
{

brs if r :⊃ s

0 otherwise
(8)

Theorem 1. We have B = exp (A). �

As shown in Section 3 below, this is equivalent to the following result.

Theorem 2. The coefficients brs satisfy the following recursions:

(i) brr = 1, (ii) (|r| − |s|) brs = ∑
u:⊃sbruaus. �

1.3 Multiplication

We next consider the operator of multiplication by p in R. Let C = C (p) denote the

transpose of its matrix with respect to the interpolation basis {hr : r ∈ L}, so that we

have

phs = ∑
rcrshr . (9)
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1600 S. Sahi

Following [21], we refer to crs = crs (p) as Littlewood–Richardson (LR) coeffi-

cients. Define a diagonal matrix D = D (p) as follows:

drs =
{

p(r) if r = s

0 otherwise
. (10)

Theorem 3. We have C = B−1 DB. �

As shown in Section 3, this is equivalent to the following:

Theorem 4. The coefficients crs satisfy the following recursions:

(i) crr = p(r) , (ii) (|r| − |s|) crs = ∑
u:⊃scruaus − ∑

v⊂:rarvcvs. �

1.4 Positivity

While the above results are the same in the symmetric and nonsymmetric settings, the

two cases are quite different with respect to considerations of positivity. To explain

this, we need additional notation. Let F+ denote the subset of F = Q (α) consisting of

elements that can be written as a quotient of two polynomials in N [α]. Note that F+ is a

convex multiplicative cone, that is, it is closed under addition, multiplication, and scalar

multiplication by Q+. We also write F++for the open subcone consisting of elements that

have a nonzero specialization at α = 0 (and hence at any a ∈ Q+).

Theorem 5. In the symmetric case, for r ⊇ s the binomial coefficients brs belong to F++.

Moreover, for any r, s ∈ L we have

brs = 0 for some α ∈ Q+ ⇐⇒ brs is identically 0 ⇐⇒ r 
⊇ s. �

Proof. The remark after formula (13) shows that for u :⊃ v in the symmetric case, auv ∈
F++. Now suppose r ⊇ s with k = |r| − |s|, then by Theorem 1

brs = 1

k!
∑

au0,u1au1,u2 . . . auk−1,uk

where the sum runs over all sequences r = u0 :⊃ u1 :⊃ u2 · · · :⊃ uk = s. This implies that

for r ⊇ s we have brs ∈ F++. The rest of the theorem follows from formula (2). �
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Binomial Coefficients 1601

It seems that a similar phenomenon holds for the LR coefficients for symmetric

interpolation polynomials, but we do not have a proof. Consider p = ht in the definition

(9) of LR coefficients, and write cr,st = crs (ht).

Conjecture 6. In the symmetric case, all the LR coefficients cr,st belong to F+. �

The nonsymmetric analogues of Theorem 5 and Conjecture 6 are false. For in-

stance, if r = [2, 1, 2] and s = [1, 2, 1], then we have

brs = cr,rs = −(1 + 2α)/(α + 2)(α + 1)2.

1.5 Remarks

In [21], Stanley considered the expansion of the product of two symmetric Jack polyno-

mials in terms of symmetric Jack polynomials, and conjectured that the corresponding

coefficients, after suitable normalization, belong to N [α]. While it follows from [19] that

these coefficients are in Z [α], their nonnegativity is as yet unproven and is perhaps the

most important outstanding problem regarding these polynomials.

It follows from formula (3) that for |r| = |s| + |t|, Stanley’s LR coefficients agree

with the symmetric cr,st up to an explicit renormalization. It is easy to see that Stanley’s

conjecture implies Conjecture 6 for |r| = |s| + |t|.
The organization of this paper is follows: in the next section we recall known

results about compositions, partitions, and Jack and interpolation polynomials. In

Section 3, we establish the equivalence of Theorems 1 and 2, as well as that of Theorems

3 and 4. This section is written in the context of arbitrary locally finite graded posets

[3]; the generality of the setting provides a substantial simplification, and the consider-

ations here may have applications beyond the current setting. We use these results in

Section 4 to prove the main theorems.

2 Preliminaries

2.1 Compositions and partitions

2.1.1

As before, we write Cn and Pn, respectively for the sets of compositions and partitions

with at most n parts. An element of Cn is simply an n-tuple of nonnegative integers
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1602 S. Sahi

η = (η1, . . . , ηn); the ηi are called the parts of η. Their sum |η| = η1 + . . . + ηn is the rank

of η. A partition is a composition λ that has nonincreasing parts

λ1 ≥ λ2 ≥ . . . ≥ λn.

2.1.2

We recall from [6] the definition of the inclusion partial order ⊇ on Cn. For γ, η in Cn,

write η :⊃ γ if there are indices 1 ≤ i1 < i2 < . . . < ik ≤ n such that

ηi =

⎧⎪⎪⎨
⎪⎪⎩

γi1 + 1 if i = ik

γi j+1 if i = i j, j < k

γi1 otherwise

.

The partial order ⊇ is defined to be the reflexive and transitive closure of :⊃, and con-

versely :⊃ is the covering relation of ⊇.

For λ,μ in Pn the relation λ :⊃ μ forces k = 1 in the above definition. Thus, the

restriction of ⊇ to Pn is the usual inclusion order as defined in [13], with λ ⊇ μ if and

only if λi ≥ μi for all i.

2.1.3

The partial order ⊇ and the rank function |·| provide each of the two sets Cn and Pn

with the structure of a graded, locally finite, poset with unique minimum element 0̂ =
(0, 0, . . . , 0).

2.2 Constants

Once again, we let F = Q (α) be the field of rational functions in a parameter α. We

collect in this subsection the definitions of various constants, associated to composi-

tions and partitions, that are needed in the theory of Jack polynomials and interpolation

polynomials.

2.2.1

The symmetric group Sn acts naturally on Cn and the Sn-orbit of each element η in Cn

contains a unique partition that we denote η+. As usual, we define the length of w ∈ Sn

to be the number of inversions of w, this is the number of pairs of indices (i, j) such that
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Binomial Coefficients 1603

i < j and w (i) > w ( j). For η in Cn, there is a unique shortest element wη in Sn such than

η = wη(η
+), and we define η ∈ Fn by

η = wη

(
η+ + ρ

) = η + wηρ (11)

where ρ = (0,−1/α, . . . ,− (n− 1) /α).

Note that for η, γ ∈ Cn, we have

∑
iηi − ∑

iγ i = (∑
iηi + ∑

iρi
) − (∑

iγi + ∑
iρi

) = |η| − |γ | (12)

Also note that λ ∈ Pn, we have wλ = id and λ = λ + ρ.

2.2.2

The Young diagram of a composition η is a left-justified rectangular array of boxes, with

ηi boxes in row i. Let s = (i, j) denote the jth box in row i, and define the arm and coarm

of s to be the number of boxes to its right and left:

arm(s) := ηi − j, coarm (s) = i − 1.

We also define the leg and coleg of s as follows:

leg(s) := #{k > i : j ≤ ηk ≤ i} + #{k < i : j ≤ ηk + 1 ≤ ηi}
coleg(s) := #{k > i : ηk > ηi} + #{k < i : ηk ≥ ηi}.

Note that if λ is a partition then leg(s) and coleg(s) are the numbers of boxes

directly below and directly above s, respectively.

2.2.3

For a box s in a composition η, we define

eη (s) = α (coarm(s) + 1) + n− coleg(s)

dη(s) = α (arm(s) + 1) + (leg(s) + 1)

d′
η(s) = α (arm(s) + 1) + leg(s)

and we put eη = ∏
s∈η eη(s), dη = ∏

s∈η dη(s), d′
η = ∏

s∈η d′
η(s), fη = dηd′

η.
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For a box s in a partition λ, we define

bλ (s) = αcoarm(s) + n− coleg(s)

cλ(s) = αarm(s) + (leg(s) + 1)

c′
λ(s) = α (arm(s) + 1) + leg(s)

and we put bλ = ∏
s∈λ bλ(s), cλ = ∏

s∈λ cλ(s), c′
λ = ∏

s∈λ c′
λ(s), jλ = cλc′

λ.

2.3 Interpolation polynomials

2.3.1

Symmetric interpolation polynomials were first introduced by the author in [17] in

connection with a joint work with B. Kostant [9, 10] on the Capelli identity. They are

characterized as follows:

Proposition 7. For each λ ∈ Pn, there is a unique symmetric polynomial Rλ = R(α)
λ (x) in

S such that deg(Rλ) ≤ |λ| and

Rλ(μ) = δλμ if μ ∈ Pn, |μ| ≤ |λ|. �

It is shown in [7, Theorem 5.2] that Rλ(μ) = 0 unless μ ⊇ λ.

2.3.2

Nonsymmetric interpolation polynomials were introduced by the author and F. Knop in

[6, 19]. They are characterized as follows:

Proposition 8. For each composition η ∈ Cn, there is a unique polynomial Gη = G(α)
η (x)

in R such that deg(Gη) ≤ |η| and

Gη(γ ) = δηγ if γ ∈ Cn, |γ | ≤ |η|. �

It is shown in [6, Theorem 4.5] that Gη(γ ) = 0 unless γ ⊇ η.
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Binomial Coefficients 1605

2.4 Jack polynomials

2.4.1

Symmetric Jack polynomials Jλ = J(α)
λ (x) were introduced by H. Jack [4] as a common

generalization of Schur polynomials and zonal polynomials, which are spherical polyno-

mials for GL (n,C) and GL (n,R), respectively. They were further studied in [8, 12, 13, 21]

where some of their key properties were established. Their connection with the interpo-

lation polynomials was proved by F. Knop and the author in [7]:

Rλ(x) = 1

jλ
Jλ + lower degree terms.

One also has the evaluation formula Jλ (1) = bλ.

2.4.2

Nonsymmetric Jack polynomials Fη = F (α)
η (x) were introduced in [16] of as eigenfunc-

tions of Cherednik operators [2] for general root systems, and studied further in [8]. The

connection with nonsymmetric interpolation polynomials was proved in [6]:

Gη = 1

fη
Fη + lower degree terms.

One also has the evaluation formula Fη (1) = eη.

2.4.3

As a consequence of the above discussion, we can give an explicit formula for the con-

stant ks in formula (3). We have

ks =
{

bλ/jλ if s = λ in the symmetric case

eη/ fη if s = η in the nonsymmetric case.
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2.5 The binomial formula

2.5.1

A further connection of the interpolation polynomials with Jack polynomials in the

symmetric case was discovered by A. Okounkov and G. Olshanski [15, Theorem 3.2], who

proved the following binomial formula (see also [5, 11] for earlier work):

Jλ (x + 1)

Jλ (1)
=

∑
μ

Rμ(λ)
Jμ (x)

Jμ (1)
.

The analogous formula for nonsymmetric polynomials was proved in [20, Corollary 1.9]

and independently in [1]

Fη (x + 1)

Fη (1)
=

∑
γ

Gγ (η)
Fγ (x)

Fγ (1)
.

The special values Rμ(λ) and Gγ (η) are called symmetric and nonsymmetric

binomial coefficients, respectively. For n = 1, they reduce to the usual binomial

coefficients.

2.5.2

For λ :⊃ μ, there is an explicit formula for Rμ(λ), first proved in [5, Proposition 2]. In this

case, λ and μ differ by a single box s0, and we let C and R denote the other boxes in the

column and row of s0, respectively. Then we have

Rμ(λ) =
(∏

s∈C

cλ(s)

cμ(s)

) (∏
s∈R

c′
λ(s)

c′
μ(s)

)
. (13)

From the formulas in Section 2.2.3, it follows that the ratios cλ(s)/cμ(s) and

c′
λ(s)/c′

μ(s) belong to F+. A slightly more careful analysis shows that they belong to F++.

This is obvious for cλ(s)/cμ(s) since the numerator and denominator are nonzero for the

specialization α = 0. Now it is possible that c′
λ(s)is a multiple of α, if legλ (s) = 0, but in

this case legμ (s) =legλ (s) = 0 as well and so c′
λ(s)/c′

μ(s)is a constant. Thus, we deduce

that Rμ(λ) ∈ F++ for λ :⊃ μ.
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In the nonsymmetric case, the analogous formula for Gγ (η) with η :⊃ γ was first

obtained in [14, Corollary 4.2]. Suppose η :⊃ γ and let 1 ≤ i1 < i2 < . . . < ik ≤ n be the

corresponding indices as in 2.1.2. Then we have

Gγ (η) = − [αan + n− 1] ·
n∏

j=1

bj − γ j

aj − γ j

where

aj =
{

γ il j ∈ [il−1, il)

γ i1 + 1 j ≥ ik
, bj =

{
γ il − 1/α j ∈ (il−1, il ]
γ i1 − 1/α j > ik

.

3 Graded Posets

For this section only, we let (L ,≥) denote an arbitrary locally finite graded poset with

a unique minimal element 0̂. Local finiteness means that all the intervals [s, r] := {x ∈
L : r ≥ x ≥ s} are finite sets. We write :> for the associated covering relation; thus r :> s

means that r ≥ s and [s, r] = {s, r}. We also assume that the grading r → |r| satisfies the

usual properties, namely

∣∣∣0̂
∣∣∣ = 0 and r :> s ⇒ |r| = |s| + 1. (14)

For more background on such posets, we refer the reader to [3].

3.1 Incidence algebra

Also in this section only, we let F denote an arbitrary field. The incidence algebra of L

is the algebra A of L × L matrices M with entries in F, satisfying mrs = 0 unless r ≥ s.

The local finiteness of L ensures that the product of two matrices in A is well defined,

and is in A, so that A is indeed an associative algebra. Moreover, for M ∈ A, the matrix

exponential

exp (M) =
∞∑

n=0

Mn

n! (15)

is a well-defined element of A. To see this we note that the rsth entry of exp (M) is the

same as that in the exponential of the finite [s, r] × [s, r] submatrix.

 at M
P

I M
athem

atics on A
ugust 8, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


1608 S. Sahi

3.2 Binomial coefficients

The first result is a recognition theorem for binomial coefficients.

Theorem 9. Let B be an arbitrary L × L matrix, and define the matrix A by

ars =
{

brs if r :> s

0 otherwise
.

Then the following are equivalent

(a) B = exp (A), and in particular B is in A,

(b) (i) brr = 1 for all r, (ii) (|r| − |s|) brs = ∑
u:>sbruaus for all r, s,

(c) (i) brr = 1 for all r, (ii) (|r| − |s|) brs = ∑
v<:rarvbvs for all r, s. �

Proof. Assume B = exp (A). Since ars = 0 unless |r| − |s| = 1, (15) implies

brs =
⎧⎨
⎩

(
An

n!
)

rs
if |r| − |s| = n ≥ 0

0 otherwise
. (16)

Thus, brr = 1 for all r, and (|r| − |s|)brs is the rsth entry of the matrix

∞∑
n=0

n
An

n! =
∞∑

n=1

An

(n− 1)! = Aexp(A) = AB = B A.

Hence (a) implies (b) and (c). Conversely each of (b) and (c) characterizes brs by induction

on ||r| − |s||; thus (b) and (c) each imply (a). �

Corollary 10. If B satisfies the conditions of Theorem 9 then B is invertible, and the

rsth entry of B−1 is (−1)|r|−|s| brs. �

Proof. This follows from (16) since B−1 = exp (−A) = ∑∞
n=0

(−1)n

n! An. �

3.3 Littlewood-Richardson coefficients

The next proposition gives a characterization of LR coefficients.
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Theorem 11. Let A and B satisfy the three equivalent conditions of Theorem 9, fix

a diagonal matrix D, and let C be an arbitrary L × L matrix. Then the following are

equivalent

(a) duubus = ∑
rcrsbur for all u in L,

(b) DB = BC ,

(c) C = B−1 DB, and in particular C is in A,

(d) crs = ∑
u (−1)|r|−|u| bruduubus,

(e) (i) crr = drr , (ii) (|r| − |s|) crs = ∑
u:>scruaus − ∑

v<:rarvcvs for all r, s. �

Proof. Statements (a), (b), and (c) are trivially equivalent and (d) is equivalent to (c) by

the previous corollary. Suppose now that (d) holds. Since B is in A, the only possibly

nonzero summands in (d) are those for which r ≥ u ≥ s. For crr , only the u = r term sur-

vives, and (d) implies (e) (i) as follows:

crr = (−1)|r|−|r| brrdrrbrr = drr .

Using Theorem 9 and (14), we obtain (e)( ii) from (d) as follows:

(|r| − |s|)crs = ∑
t(|r| − |t| + |t| − |s|) (−1)|r|−|t| brtdttbts

= ∑
t (−1)|r|−|t| [∑

u<:rarubut
]

dttbts

+ ∑
t (−1)|r|−|t| brtdtt

[∑
v:>sbtvavs

]

= −∑
u<:rarucus + ∑

v:>scrvavs.

Conversely (e) characterizes crs by induction on ||r| − |s||; so (e) implies (d). �

4 Proofs of the Main Results

4.1

We first prove Theorems 1, 2, and 5. In the symmetric case, Theorem 2 was first proved

in [5] and our proof is a generalization of the argument in [15].
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Proof. By formula (6), we get brr = hr (r) = 1, which is part (i) of Theorem 2. Also by

formulas (6) and (12), part (ii) of Theorem 2 is the specialization at x = r of the following

polynomial identity:

(∑
i
xi −

∑
i
si

)
hs(x) =

∑
u:⊃s

aushu(x). (17)

To prove (17), we let φ denote the left side. We claim that φ vanishes if x = r with |r| ≤ |s|.
Indeed if |r| < |s| then hs(r) = 0, while if |r| = |s| by formula (12) we get

∑
i ri − ∑

i si =
|r| − |s| = 0 . Since φ is a polynomial of degree |s| + 1, the vanishing conditions and for-

mulas (1–2) imply that

(∑
i
xi −

∑
i
si

)
hs(x) =

∑
u:⊃s

kushu(x)

for some coefficients kus. Fix v :⊃ s and substitute x = v in the above to get

(|v| − |s|) hs(v) =
∑

u:⊃s
kusδuv =⇒ avs = kvs.

Theorem 1 follows from Theorems 2 and 9. �

4.2

We now prove Theorems 3 and 4.

Proof. By the definition (9) of C , we have

∑
r

crshr (x) = p(x) hs (x) .

Evaluating at x = u, we get

p(u) hs (u) =
∑

r
hr (u) crs

and recalling the definitions of B (5) and D (10) this implies

duubus =
∑

r
burcrs.

Theorems 3 and 4 now follow from Theorems 11 and 2. �

 at M
P

I M
athem

atics on A
ugust 8, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Binomial Coefficients 1611

References
[1] Baker, T. H., and P. J. Forrester. “Nonsymmetric Jack polynomials and integral kernels.” Duke

Mathematical Journal 95 (1998): 1–50.

[2] Cherednik, I. “Nonsymmetric Macdonald polynomials.” International Mathematical

Research Notices 10 (1995): 483–515.

[3] Doubilet, P., G.-C. Rota, and R. Stanley. “On the Foundation of Combinatorial Theory (VI). The

Idea of Generating Functions.” In Sixth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 2: Probability Theory, 267–318. Berkeley: University of California Press,

1972.

[4] Jack, H. “A class of symmetric polynomials with a parameter.” Proceedings of the Royal

Society Edinburgh Section A 69 (1969–1970): 1–17.

[5] Kaneko, J. “Selberg integrals and hypergeometric functions associated with Jack

polynomials.” SIAM Journal on Mathematical Analysis 24 (1993): 1086–110.

[6] Knop, F. “Symmetric and nonsymmetric quantum Capelli polynomials.” Commentarii

Mathematici Helvetici 72 (1997): 84–100.

[7] Knop, F., and S. Sahi. “Difference equations and symmetric polynomials defined by their

zeros.” International Mathematics Research Notices 10 (1996): 473–86.

[8] Knop, F., and S. Sahi. “A recursion and a combinatorial formula for Jack polynomials.”

Inventiones Mathematicae 128 (1997): 9–22.

[9] Kostant, B., and S. Sahi. “The Capelli identity, tube domains, and the generalized Laplace

transform.” Advances in Mathematics 106 (1991): 411–32.

[10] Kostant, B., and S. Sahi. “Jordan algebras and Capelli identities.” Inventiones Mathematicae

112 (1993): 657–64.

[11] Lassalle, M. “Une formule du binome generalisee pour les polynomes de Jack.” Comptes

Rendus de l’Académie des Sciences, Paris Série 1, Mathématique 310 (1990): 253–6.
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