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1. Introduction

In this paper we undertake the analysis of a certain class of birth processes. We estab-
lish a number of new results for these processes, including a precise description of their
asymptotic behavior. As a consequence we also obtain simple proofs and generaliza-
tions of several results in the current literature on the subject.

A discrete-time pure birth process is a sequence of random variables {X0, X1, . . .},
such that the possible values (states) for Xn are the integers 0, 1, 2, . . . , n. The process
starts in state 0 and direct transitions are only possible from state m to state m+1. Such
a process is characterized by its transition probabilities

τm,n = Pr{Xn+1 = m+1 |Xn = m} . (1.1)

Indeed, writing
Pm,n := Pr{Xn = m} ,

we have P0,0 = 1, and the following recursion holds

Pm,n = (1− τm,n−1)Pm,n−1 + τm−1,n−1Pm−1,n−1. (1.2)

In a number of important situations, the transition probabilities factorize in the form

τm,n = αmβ−1
n , (1.3)
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where αm and βn depend only on m and n respectively.
Our first main result is the following “product formula” for the birth process.

Theorem 1.1. Let Xn be as in (1.1) – (1.3). Then for each n we have

E

(
Xn−1

∏
j=0

[
1+uα−1

j

])
=

n−1

∏
j=0

[
1+uβ−1

j

]
,

where E( f (Xn)) denotes the expected value of f (Xn).

We next consider the asymptotic behaviour of the process in a suitable regime for
the transition probabilities, viz. we assume that the infinite products

∏ j≥0 α j, ∏ j≥0 β j

are absolutely convergent.
By [13, Section 2.7], this means that the log series

∑ logα j, ∑ logβ j

are absolutely convergent. Moreover if we write

γ j = 1−α j , δ j = β j −1, (1.4)

then absolute convergence is equivalent to

∑
∣∣γ j
∣∣< ∞, ∑

∣∣δ j
∣∣< ∞ and γ j 6= 1, δ j 6= −1. (1.5)

We now introduce the random variable

Yn = n−Xn . (1.6)

Thus Yn is the population “deficit” at time n.

Theorem 1.2. Let Yn be as in (1.1) – (1.6). Then Yn converges in distribution to a
random variable Y , valued in the set {0, 1, 2, . . .} and moreover

E
(
eτY )=

∞

∏
j=0

1− γ j

1− eτγ j

∞

∏
j=0

1+ eτδ j

1+δ j
,

where the products converge uniformly in a strip

0 ≤ |Re (τ)| < ε.

In particular, one can compute explicitly the moments and central moments of Y ,
which are defined by

µ ′
n = E [Y n] , µn = E [(Y −E [Y ])n] .

To describe the result, we introduce the rational function
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fk (z) =

(
z

d
dz

)k [ z
1− z

]
. (1.7)

We also recall the definition of the Bell polynomials

Bn (x1, . . . , xn) = n! ∑
λ

n

∏
i=1

[xi/i!]mi

mi!
, (1.8)

where the sum ranges over all partitions λ of n, written in the form

1m1 +2m2 + · · ·+nmn = n.

Theorem 1.3. For Y as in Theorem 1.2, the moments of Y are given by

µ ′
n = Bn (κ1, κ2, . . . , κn) , (1.9)

µn = Bn (0, κ2, . . . , κn) , (1.10)

where

κi =
∞

∑
j=0

[ fi−1 (γ j)− fi−1 (−δ j)] . (1.11)

The numbers κi in formula (1.11) are in fact the cumulants of Y . We recall that
the first two cumulants are simply the mean κ1 = µ and the variance κ2 = σ2. Also,
the functions fk are closely related to the Eulerian polynomials. We postpone a gen-
eral discussion of cumulants, Bell polynomials, and Eulerian polynomials to the next
section.

An interesting situation arises when we put

γ j = q j+1, δ j = 0. (1.12)

In this case, the birth process has combinatorial interpretations in terms of heaps [12]
and random graphs [1]. We recall the usual q-series notation

(x)n = (1− x)(1− xq) · · ·
(
1− xqn−1) ,

and also the “sum of divisors” functions

Sk (q) = ∑
n≥1

σk (n)qn where σk (n) = ∑
d|n

dk.

Theorem 1.3 has the following very pretty specialization:

Proposition 1.4 (Uchimura). Suppose Y is as in the previous theorem, and assume
that γ j, δ j are as in (1.12). Then for all k ≥ 0 we have

Pr{Y = k} = qk
(

qk+1
)

∞
, (1.13)

κk+1 (Y ) = Sk (q) . (1.14)
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As a further consequence we obtain

Corollary 1.5. We have the following q-series identities

∑
k≥0

knqk
(

qk+1
)

∞
= Bn (S0, . . . , Sn−1) , (1.15)

∞

∑
k=1

(−1)k−1 q(k+1
2 )

(q)k (1−qk)
n =

1
n!

n

∑
k=1

|s(n, k)|Bk (S0, . . . , Sk−1) . (1.16)

Here s(n, k) are Stirling numbers of the first kind defined by

z(z−1) · · · (z−n+1) =
n

∑
k=1

s(n, k) zk.

The identity (1.15) was first obtained by Uchimura in [12, Theorem 2.1]. It was
independently rediscovered by Andrews-Crippa-Simon [1] along with (1.16) in a less
explicit form. In fact, as pointed out in [1] and Dilcher [3], (1.16) can be easily derived
from (1.15). Dilcher also discovered finite analogs of (1.16) which were subsequently
generalized by Prodinger [8] and Fu-Lascoux [5].

Our work on this topic was motivated by the results of [2]. Our Theorem 1.3 is a
far-reaching generalization of Theorems 3.2 – 3.4 of that paper.

The organization of the paper is as follows: In Section 1 we recall basic facts about
moments and cumulants. In Section 2, we establish the product formula of Theorem
1.1. In Sections 3 and 4 we analyze the asymptotics to deduce the characteristic function
of Theorem 1.2 and the moment formula of Theorem 1.3. Finally in Section 5, we
consider transition probabilities satisfying formula (1.12), and deduce Proposition 1.4
and Corollary 1.5.

The probabilities Pm,n are closely related to the more general interpolation polyno-
mials Pλ (x;ρ) defined in [10]. It would be interesting to obtain a statistical interpreta-
tion for the general Pλ (x;ρ) which might shed light on some of their properties.

2. Preliminaries

2.1. Symmetric Functions

Let e(x) and h(x) be the elementary and complete symmetric functions in x, defined
by the expansions

n

∏
j=1

(1+ zx j) =
n

∑
i=0

ziei (x) ,

and
n

∏
j=1

(1− zx j)
−1 =

∞

∑
i=0

zihi (x) .

The main result of [2, Theorem 3.1] can be reformulated as follows:
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Proposition 2.1. Let Pm,n = Pr(Xn = m) be as in (1.1) – (1.6), then we have

Pm,n =

[
m−1

∏
j=0

α j

n−1

∏
j=0

β−1
j

]
Qm,n (β;α) ,

where
Qm,n (β;α) = ∑

i+ j=n−m
(−1)i hi (α0, . . . , αm)e j (β0, . . . , βn−1) . (2.1)

Since our notation is slightly different from [2], we provide a translation for the
reader. Our transition probability τm,n in formula (1.1) corresponds λn,m in [2, 1.3]. Our
βi and αi correspond to β−1

i and γ j in [2, 3.2]. Our Pm,n and Qm,n correspond to Pn,m

and P̂n,m in formulas [2, 1.4 and 3.4]. Our formula (2.1) above is simply the formula
for P̂n,m in the proof of [2, Theorem 3.1]. Finally, we observe that the formula [2, 1.7]
actually contains a misprint — the arguments of en−i should be 1

β0
, . . . , 1

βn−1
instead of

1−β0
β0

, . . . ,
1−βn−1

βn−1
.

We note that it is immediate from the definition that Qm,n (β;α) is precisely the
coefficient of tn−m in the power series expansion in t of the rational function

n−1

∏
j=0

(1+ tβ j)/
m

∏
i=0

(1+ tαi) . (2.2)

The same polynomial Qm,n (β;α) arises in a completely different context in [6].
The Proposition 3.1 of [6] shows

Proposition 2.2. The polynomial Qm,n (β;α) is the unique polynomial in β0, . . . , βn−1
with coefficients in the field Q(α) satisfying the following properties

(1) It is symmetric in β0, . . . , βn−1.
(2) Its highest degree term is en−m (β0, . . . , βn−1).
(3) It vanishes if we set β0 = α0, . . . , βm = αm.

The vanishing property of Qm,n (β;α) is easy to see from (2.2). The key point is
that if we set β0 = α0, . . . , βm = αm in (2.2) we obtain a polynomial of degree tn−m−1.
Thus the coefficient of tn−m is 0.

2.2. Cumulants

We recall that for a random variable X , the expression

E [exp(tX)] =
∞

∑
n=0

µ ′
n

tn

n!

is called the moment generating function. The cumulants κ j are defined via the identity

exp

[
∞

∑
i=1

κi
t i

i!

]
=

∞

∑
n=0

µ ′
n

tn

n!
,
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which implies polynomial expression for the cumulants κ j in terms of the moments µ ′
n,

and vice versa. Indeed, rewriting the left side as

∞

∏
i=1

exp
[
κit i/i!

]
=

∞

∏
i=1

[
∞

∑
mi=0

[κi/i!]mi

mi!
t imi

]
,

one arrives at formula (1.9) for µ ′
n in terms of the Bell polynomial (1.8).

As explained previously, the first two cumulants are precisely the mean and standard
deviation of X . The higher cumulants (κ j, j ≥ 3) are measures of non-normality of X ;
they are all 0 if X is a Gaussian random variable. In statistics, κ3/σ3 is called the
skewness, and κ4/σ4 is called the kurtosis excess.

The central moments of X are the moments of the random variable

Z = X −E [X ] = X −κ1,

which has the generating function

E [exp(tZ)] = E [exp(tX)]/exp(tκ1) =
∞

∏
i=2

exp
[
κit i/i!

]
,

and therefore we get formula (1.10).
Next, one can write

fk (z) =

(
z

d
dz

)k [ z
1− z

]
=

zEk (z)

(1− z)k+1 ,

where E0 (z) = 1, while for k ≥ 1, Ek (z) is a polynomial of degree k−1:

Ek (z) =
k−1

∑
j=0

E (k, j) z j.

These polynomials Ek (z) are called the Eulerian polynomials and their coefficients
E (k, j) are called Eulerian numbers. They satisfy the Pascal triangle type relation:

E (k, j) = (k− j +1)E (k−1, j−1)+( j +1)E (k−1, j) .

The first few Eulerian polynomials are as follows:

E1 (z) = 1,

E2 (z) = 1+ z,

E3 (z) = 1+4z+ z2,

E4 (z) = 1+11z+11z2+ z3,

E5 (z) = 1+26z+66z2+26z3 + z4.
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3. The Product Formula

In this section we prove Theorem 1.1, as a straightforward consequence of the following
result.

Proposition 3.1. Let Qm,n be as in (2.1), then we have the identity

n

∑
m=0

Qm,n (β;α)
m−1

∏
i=0

(u+αi) =
n−1

∏
i=0

(u+βi) . (3.1)

Proof. Let us write

υm =
m−1

∏
i=0

(u+αi) .

Then we have
υm = um + lower terms.

Therefore we can invert this expansion and express ui (0 ≤ i ≤ n) in terms of υi (0 ≤
i ≤ n) .

In particular we have an expansion of the form

n

∑
m=0

Rm,n (β;α)
m−1

∏
i=0

(u+αi) =
n−1

∏
i=0

(u+βi) , (3.2)

with some unknown polynomials Rm,n (β;α). We will prove

Rm,n (β;α) = Qm,n (β;α)

by verifying the properties of Proposition 2.2.
Clearly Rm,n (β;α) is symmetric in β. Also setting

α0 = · · · = αn−1 = 0

in (3.2) we deduce
n

∑
m=0

Rm,n (β;0)um =
n−1

∏
i=0

(u+βi) .

The leading term in β of Rm,n (β;α) is

Rm,n (β;0) = en−m (β) ,

as desired.
To complete the proof, it suffices to show that for each k

Rk,n (β;α) |β0=α0,...,βk=αk
= 0.

We will prove this by induction on k. First, in (3.2) we set

β0 = α0 = − u,
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then the right side is 0 because of the factor u + β0, whereas on the left, all but one of
the terms drops out because of the factor u+α0. Thus we get

R0,n (β;α) |β0=α0 = 0,

which is the desired result for k = 0.
We now proceed by induction on k. Set

β0 = α0, . . . , βk−1 = αk−1 and βk = αk = −u

in (3.2). Once again the right side is 0 because of the factor u + βk. On the left side,
the terms for m = 0, . . . , k− 1 vanish by the inductive hypothesis, while the terms for
m = k +1, . . . , n−1 vanish because of the presence of the factor u+αk. Thus we get

[
Rk,n (β;α) |β0=α0,...,βk=αk

] k−1

∏
i=0

(αi −αk) = 0.

Since ∏k−1
i=0 (αi −αk) is invertible in the field Q(α), the result follows.

By Proposition 2.2 we deduce that for all m

Rm,n (β;α) = Qm,n (β;α) ;

and so (3.2) becomes (3.1).

Theorem 1.1 is now an immediate consequence.

Proof of Theorem 1.1. Combining Lemma 2.1 with the previous proposition, we obtain

n

∑
m=0

Pm,n

∏n−1
j=0 β−1

j ∏m−1
i=0 αi

m−1

∏
i=0

(u+αi) =
n−1

∏
i=0

(u+βi) .

Rewriting this, we get

n−1

∏
i=0

(
1+uβ−1

i

)
=

n

∑
m=0

Pm,n

m−1

∏
i=0

(
1+uα−1

i

)
= E

[
Xn−1

∏
i=0

(
1+uα−1

i

)
]

.

In view of the standard identity

k

∏
i=1

(1+uxi) =
k

∑
m=0

em (x1, . . . , xk)um,

the previous result can also be reformulated as

Corollary 3.2. E
[
em

(
α−1

0 , . . . , α−1
Xn−1

)]
= em

(
β−1

0 , . . . , β−1
n−1

)
.
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4. The Characteristic Function

In this section, we will prove Theorem 1.2. For this we define

φk,n (z) =
n−1

∏
j=0

1+ zδ j

1+δ j

n−k−1

∏
j=0

1− γ j

1− zγ j
. (4.1)

Lemma 4.1. Let Yn be as in (1.1) – (1.6 ), then

Pr{Yn = k} =
1
k!

φ(k)
k,n (0) .

Here f (k) (z) denotes the k-th derivative of f .

Proof. By definition,

Pr{Yn = k} = Pr{Xn = n− k}= Pn−k,n.

Therefore by Proposition 2.1 we get

Pr{Yn = k} =

[
n−k−1

∏
j=0

α j

n−1

∏
j=0

β−1
j

]
Qn−k,n (β;α) .

By (1.4), we have
α j = 1− γ j, β j = 1+δ j.

Now the recursion (1.2) for Pm,n yields the following recursion for Qm,n

Qm,n = (βn−1−αm)Qm,n−1 +Qm−1,n−1.

In particular we see that the recursion is unchanged if we add the same constant to
all αi and β j. Thus we get

Qm,n (β;α) := Qm,n (1+δ; 1− γ) = Qm,n (δ; −γ) .

So we have

Pr{Yn = k} =

[
∏n−k−1

j=0 (1− γ j)

∏n−1
j=0 (1+δ j)

]
Qn−k,n (δ;−γ) .

Now by formula (2.2), Qn−k,n is the coefficient of zk in the expansion of

n−1

∏
j=0

(1+ zδ j)
n−k−1

∏
j=0

(1− zγ j)
−1 .

Therefore Pr{Yn = k} is the coefficient of zk in φk,n, and the result follows by Taylor’s
formula.
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We next study the behaviour of the corresponding infinite products.

Lemma 4.2. Let γ j be as in (1.1) – (1.5) then

0 ≤ γ j < 1 for all j .

Furthermore, we have
supγ j = maxγ j < 1.

Proof. Since the products ∏∞
j=0 α j , ∏∞

j=0 β j are absolutely convergent, we have

lim
j

α j = lim
j

β j = 1.

In particular, for all m we have

αm = lim
n

αmβ−1
n = lim

n
τm,n ∈ [0, 1].

Again, by the absolute convergence of ∏∞
j=0 α j we have

α j 6= 0 for all j.

Hence we have
α j ∈ (0, 1],

and therefore
γ j = 1−α j ∈ [0, 1),

which proves the first part of the lemma.
For the second part, we merely observe that since γ j → 0, the sequence

{
γ j
}

attains
its supremum.

Lemma 4.3. Let γ j, δ j be as in (1.1) – (1.5) then there is R > 1, such that the infinite
product

φ(z) =
∞

∏
j=0

1− γ j

1− zγ j

∞

∏
j=0

1+ zδ j

1+δ j

converges uniformly and absolutely on the disc {|z| ≤ R}, and defines a holomorphic
function there.

Proof. It suffices to consider the products ∏ (1+ zδ j) , ∏ 1
1−zγ j

separately.
By (1.5), the series

∑
∣∣zδ j

∣∣= |z| ∑
∣∣δ j
∣∣

converges uniformly on compact sets. Therefore by [9, Theorem 15.4], the product

∏ (1+ zδ j)

converges uniformly on compact sets and defines an entire function.
By the previous lemma, we can choose R > 1 such that

supγ j < R−1 < 1.
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Then on the disc {|z| ≤ R}, we have

∑
∣∣∣∣

zγ j

1− zγ j

∣∣∣∣≤
|z|
m ∑

∣∣γ j
∣∣ ,

where
m = inf

∣∣1− zγ j
∣∣> 1−Rsupγ j > 0.

Therefore again by [9, Theorem 15.4], the product

∏ 1
1− zγ j

= ∏
(

1+
zγ j

1− zγ j

)
,

converges uniformly to a holomorphic function on the disc {|z| ≤ R} .

Proposition 4.4. Let Yn be as in (1.1) – (1.6), and define

yk = lim
n→∞

Pr{Yn = k} .

Then the limit exists, and moreover

∞

∑
k=0

ykzk =
∞

∏
j=0

1− γ j

1− zγ j

∞

∏
j=0

1+ zδ j

1+δ j
. (4.2)

In particular, the series is absolutely convergent on the disc {|z| ≤ R}, where R > 1 is
as in the previous lemma.

Proof. Let us fix k and consider the sequence φk,n from (4.1) as n → ∞. By Lemma 4.3,
we have

lim
n→∞

φk,n → φ

uniformly on {|z| ≤ R}. Note that the limit is independent of k.
Therefore, by an elementary result in complex analysis [9, Corollary 10.27], we get

lim
n

φ(k)
k,n → φ(k).

Therefore by Lemma 4.1 we get

lim
n→∞

Pr{Yn = k} = lim
n→∞

1
k!

φ(k)
k,n (0) =

1
k!

φ(k) (0) .

This identifies yk with the Taylor coefficients of φ and the result follows.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. By the previous proposition, Yn converges in distribution to the
random variable Y , such that

Pr{Y = k} = yk.

Let R be as in the previous proposition and set

ε = logR > 0.
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Then for
|Reτ| ≤ ε,

we have
|eτ| ≤ R.

Therefore we may substitute
z = eτ (4.3)

in formula (4.2), to get

E
[
eτY ]=

∞

∑
k=0

ykeτk =
∞

∏
j=0

1− γ j

1− eτγ j

∞

∏
j=0

1+ eτδ j

1+δ j
,

and the result follows.

5. The Cumulant Formula

Proof of Theorem 1.3. The cumulants of Y are given by

κk+1 =

(
d
dτ

)k [
logE

(
eτY )]∣∣

τ=0.

Or, equivalently, in terms of the variable z from (4.3)

κk+1 =

(
z

d
dz

)k [
logE

(
zY )]∣∣

z=1 =

(
z

d
dz

)k

logφ(z)
∣∣
z=1,

where, as in (4.2), we have

φ(z) =
∞

∏
j=0

1− γ j

1− zγ j

∞

∏
j=0

1+ zδ j

1+δ j
,

with uniform convergence for |z| ≤ R , with R > 1.
Moreover we have

φ(1) = 1.

Therefore φ(z) is analytic and non-zero in a small disk D centered at 1.
This means we can take the principal branch of the logarithm of both sides to get

logE
(
zY )=

∞

∑
j=0

(log [1+ zδ j]− log [1− zγ j])+ const.

For z in D, the series on the right converges uniformly and therefore we can differentiate
under the summation sign.

Finally, substituting z = zy we conclude that

[
z

d
dz

]k+1

log(1− zy)
∣∣
z=1 =

[
z

d
dz

]k+1

log(1− z)
∣∣
z=y = − fk (y) ,



The Asymptotic Behavior of Certain Birth Processes 267

Hence we get

κk+1 =

[
z

d
dz

]k+1

logφ(z)
∣∣
z=1 =

∞

∑
j=0

[ fk (γ j)− fk (−δ j)] .

This proves formula (1.11), and the rest of the theorem follows as discussed in
Section 2.

6. Divisors and q-Series

Let Yn be as in (1.1) – (1.4), (1.6) and set

γ j = q j+1, δ j = 0

as in (1.12) . If we have 0 ≤ q < 1, then the conditions (1.5) are satisfied and all of the
results of the previous sections hold.

We can now prove Proposition 1.4.

Proof of Proposition 1.4. As before we write

yk = Pr(Y = k) .

Then by formulas (4.2) and (1.12) we get
∞

∑
k=0

ykzk =
∞

∏
j=0

1−q j+1

1− zq j+1 =
(q)∞
(zq)∞

.

By an elementary identity due to Euler [7, Ex. I.2.4], we have

1
(x)∞

=
∞

∑
k=0

xk

(q)k
.

Therefore comparing coefficients we get

yk =
(q)∞
(q)k

qk = qk
(

qk+1
)

∞
.

Next, we have the series expansion

fk (z) =

[
z

d
dz

]k( z
1− z

)
=

∞

∑
d=1

dkzd .

Therefore by Theorem 1.3 we get

κk+1 =
∞

∑
l=0

fk

(
ql+1

)
=

∞

∑
d=1

∞

∑
l=0

dkqd(l+1).

Replacing d (l +1) by n, we obtain

κk+1 =
∞

∑
n=1

∑
d|n

dkqn = Sk (q) ,

which proves formula (1.14).
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Corollary 1.5 is an immediate consequence.

Proof of Corollary 1.5. The q-series of formula (1.15) is

∑
k≥0

knqk
(

qk+1
)

∞
.

In view of the previous lemma this can be written as

∞

∑
k=0

kn Pr(Y = k) = E(Y n) = µ ′
n.

Therefore formula (1.15) follows from formula (1.9).
We next consider formula (1.16). As explained in [1, p. 49] and Dilcher [3, Lemma

1], using the binomial theorem, together with the following standard q-series identity
[7, Ex. I.2.4]

(z)∞ =
∞

∑
n=0

(−1)n

(q)n
q(n

2)zn,

we can rewrite the left side of (1.16) as

∞

∑
k=0

(
k +n−1

n

)
qk
(

qk+1
)

∞
= E

[
Y (Y +1) · · ·(Y +n−1)

n!

]
.

Since we have

Y (Y +1) · · · (Y +n−1) =
n

∑
k=1

|s(n, k)|Y k,

formula (1.16) follows from (1.15).
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