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Abstract

We consider a mechanism in which individuals send signals, indicating how much of each com-
modity they are willing to put up for trade. The mechanism produces prices and redistributes the
commodities. We require that the map from signals to trades and prices, satisfy certain axioms and
show that there are in essence only a finite number of mechanisms (i.e. maps) which satisfy these
axioms. They include the Shapley mechanism and the Shapley–Shubik mechanism, and variants
that lie “in between” the two. We also point out an open problem regarding a convexity property of
these mechanisms, which is germane to the analysis of games based on them.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Suppose there aren individuals who wish to trade amongst themselves inm commodities.
Two possible mechanisms1 for accomplishing such trade have been suggested byShapley
and Shubik (1977), Shapley (1976), Sahi and Yao (1989). The purpose of this paper is to

� A brief summary of the results in this paper was contained in a survey inDubey (1994)but they are being
presented here in full for the first time.

∗ Corresponding author. Tel.:+1-631-632-7555; fax:+1-631-632-7535.
E-mail address:pradeepkdubey@yahoo.com (P. Dubey).

1 We should emphasize that by a mechanism we meanonly the rules of price formation and trade. In this paper,
we do not discuss the issues of what constrains or motivates the traders. Such issues can only be raised after the
introduction of utilities, endowments, and solution concepts. Our concerns are much more primitive in that we
seek only to address the possibility of axiomatizing mechanisms. Thus, the “commodities” in our model are not
presumed to have intrinsic worth, and could correspond to fiat money, stock certificates, etc.
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establish an axiomatic foundation for a class of mechanisms which includes both of these
as special cases.

We start by describing the Shapley–Shubik and Shapley mechanisms.
In the Shapley–Shubik mechanism one of the commodities, saym, is called money, and

plays a distinguished role. Each traderα sends a signal, which consists of a pair of numbers
qαi , b

α
i for each commodityi, other than money. The first numberqαi indicates how much

of commodityi he is offering for sale, andbαi indicates how much money he is offering
for the purchase ofi. Having received this data, the mechanism does two things. First it
computes a price for each commodity by the formulapi = (∑n

α=1 b
α
i

)
/
(∑n

α=1 q
α
i

)
; and

then it redistributes the commodities so thatα getsrαm = ∑m−1
i=1 piq

α
i units of money and

rαi = bαi /pi units of commodityi.
In the Shapley mechanism all commodities are treated symmetrically. Each traderα

sends a signal which is anm × m matrix whoseij th entry aαij indicates the amount of
commodity i he is offering in exchange for commodityj. The mechanism calculates
prices by solving the system of equations
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;

and then it redistributes the commodities, so thatα getsrαi = p−1
i

∑m
j=1pja

α
ji units of

commodityi.
Both mechanisms are in the Cournot tradition, in that signals are denominated in quan-

tities of commodities. In the Shapley–Shubik mechanism there arem − 1 decentralized
trading-postswhich are cleared independently of each other. On the other hand, in the
Shapley mechanism the signalsaij are addressed to awindowfor commodityj in acentral
clearing-house, which then determines prices and returns, based on all the signals.

The two mechanisms are special cases of what we would like to call aG-mechanism,
based on acompletely reduciblegraphG.

We say that a directed graphG is irreducible, if every node is connected to each of the
other nodes by adirectedpath. We say thatG is completely reducible if it is an (arc-)disjoint
union of irreducible graphs.

Let G be a completely reducible, directed, graph with a node for each commodityi =
1, . . . , m. We define theG-mechanism as follows: each traderα sends a signal which
consists of non-negative numbersaαij for each arc(i, j) in G, whereaαij indicates the amount
of commodityi that he is offering in exchange for commodityj. The prices and returns are
then given by the formulas for the Shapley mechanism, where we understandaαij to be 0 for
non-existent arcs.

Clearly the Shapley mechanism corresponds to the complete graph, and it is easy to see
that the Shapley–Shubik mechanism arises from the graph with arcs(i,m), (m, i) for all
i < m.

The price equations state that the total value of commodityi in the market equals the
total value of all commodities that are “chasing”i. We now describe the conditions for the
existence and uniqueness of a positive solution.

These conditions are discussed inSahi and Yao (1989), and are somewhat subtle. Let us
call an arc(i, j) activeif

∑
α a

α
ij is positive, and consider the subgraph ofG spanned by the

active arcs. Then the price equations have a positive solution if and only if this subgraph is
completely reducible, and in this case the prices are uniquely determined up to independent,
positive, scalar multiples on each irreducible component. This indeterminacy of prices has
no effect on the returns.
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On account of their explicit nature, theG-mechanisms may appear somewhat ad hoc. We
will show in this paper that they are characterized by four axioms.

Consider an abstractly given mechanism which works as follows. Traders send out signals,
which indicate how much of each commodity they are willing to put up for trade. The signal
in any single commodity by a trader can, in general, be a vector.

After receiving all the signals, the mechanism determines prices and assigns “returns” to
each trader. We require that the mechanism be efficient, i.e. that it redistribute everything it
receives. We further require that for each trader, the values (under the prevailing prices) of
his sales and purchases be equal.2

The first is anaggregationaxiom. This says that if a trader pretends to be two persons,
by splitting his signal, this has no effect on the prices or on the returns to the others.

The second axiom is aninvariancerequirement with respect to the units in which com-
modities are measured. Consider a change of units and re-denominate signals in them. The
axiom says that thephysicalreturns and prices remain unchanged, except that they are now
quoted in the new units.

The third axiom isprice mediation, and says that the returns that accrue to any trader
depend, in an anonymous way, only upon his signal and the prevailing prices.

This is not to say that a trader does not influence prices by his signals; he invariably does,
which is but to be expected in an oligopolistic set-up. The point is that any trader interacts
with the others solely through the prices. Thus, prices mediate trade and summarize all the
relevant information for any trader. In this sense they act as a “decoupling device”.

Finally, we have anaccessibilityaxiom. Consider the “universal” set of return vectors
that a trader can get as he varies his signals in asinglecommodityi, while others vary their
signals arbitrarily. The axiom says that this set is closed. In other words, if the trader can
get “arbitrarily close” to a particular return vector in this set, it is actually accessible!

Some alternatives to these axioms are discussed inSection 5.
Our main theorem states thatany mechanism that satisfies the axioms is essentially a

G-mechanism for some completely reducible graphG on the set of commodities.
The reason for the qualification “essentially” is that the mechanism may have some

“redundancies”. We describe here the prototypical example of a redundancy, deferring the
precise definition toSection 3.

Consider the Shapley mechanism with three commodities, and add an extra component
“a14” for the signals in commodity 1. Now define a new mechanism on the enlarged signal
space as follows: first, shrink the new signals back to the “standard” form by the rule
(a11, a12, a13, a14) �→ (a11, a12 + λa14, a13 + (1 − λ)a14, for some 0≤ λ ≤ 1; and then
apply the Shapley mechanism.

It is clear that the new mechanism satisfies all our axioms. However, it is equally clear
that a trader who uses a new signal could achieve the same effect by sending the equivalent
shrunk signal in the first three components and 0 in the fourth component for commodity 1.
He uses the same amounts of each commodity in sending this signal, and leaves unchanged
the prices andeveryone’sreturns! Thus, in this sense the additional component is redundant,
and the new mechanism is essentially the same as the standard Shapley mechanism.

2 Since the mechanism is efficient, the value equivalence is automatically trueon the aggregate. Thus, the
requirement is that the mechanism does not assign profitable trades to some traders at the expense of others.
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In conclusion, let us point out that the real import of our paper is to show that the
axiomsimplythe existence ofcommodity markets—the trading-posts of the Shapley–Shubik
mechanism and the windows of the Shapley mechanism—and that the “abstract” signals
are actually addressed to these specific markets.

2. The axioms

In this section we state our axioms more precisely after introducing the necessary notation.
A signal in commodityi is a non-negative vector withki components. Thus, the signal

space for commodityi is S[i] ≡ R
ki+; and the “full” signal spaceis the Cartesian product

S of S[1] through S[m]. S may be identified with the non-negative orthantRk+ where
k = k1 + · · · + km, and we will writeS+ for the positive orthantRk++.

We will usei, j, for commodities,α, β, for traders anda, b for signals inS. Superscripts
will refer to traders, and subscripts usually to commodities, except that the subscriptlwill be
reserved for the components of a signal. We will writeKi for the set{k1+k2+· · ·+ki−1 <

l ≤ k1 + k2 + · · · + ki}. This is the set of components of a signal which are denominated
in commodityi.

Let us writeC ≡ Rm+ for thecommodity space. There is a natural linear mapχ : S → C,
where theith component ofχ(a) is the sum of theKi-components ofa. Thus,χ(a) represents
the commodity bundle required to send the signala.

In matrix notation, we may writeχ(a) = AawhereA is them×k auxiliary matrixwhose
first k1 columns are(1,0, . . . ,0)t , the nextk2 columns are(0,1,0, . . . ,0)t , etc.

Pricesp are to be thought of as (consistent) exchange-rates between commodities. Thus,
they are naturally in theprice spaceP ≡ Rm++/R++, the set of “rays” inRm++. We will
think of prices inP as vectors inRm++, with the understanding that any notions involving
them will be scale-invariant. Finally,return vectorsare commodity bundles (inC) which
are sent back to the traders by the mechanism, as a consequence of their collective choice
of signals. We will use the lettersp, q for prices andr, s for returns.

LetSn be then-fold Cartesian product ofS with itself. Ann-tuple of signals (a1, . . . , an)
in Sn represents a choice of signals by all agents, and will frequently be abbreviated asa.
It is inappropriate to assume that all sucha lead to price formation, but itis appropriate to
require that this be true for signals which are “positive” on the aggregate. Thus, let

S(n) = {a ∈ Sn : a1 + · · · + an ∈ S+}.

Definition. A market mechanism form commodities is a collection of maps (one for each
n) from S(n) to P × Cn with the following two properties: supposea results in the price
vectorp and return vectorsrα, then

(i)
∑n

α=1χ(a
α) = ∑n

α=1 r
α,

(ii) p · χ(aα) = p · rα for 1 ≤ α ≤ n.

These are the efficiency and value-conservation requirements discussed previously.
We are now ready for the precise statements of our axioms.



P. Dubey, S. Sahi / Journal of Mathematical Economics 39 (2003) 377–389 381

It is easier (andsufficient!) to state a weak form of the aggregation axiom, in which we
only consider the effect of the “last” person splitting his signals.

Axiom 1 (Aggregation). Supposea ∈ S(n) andb ∈ S(n + 1) are such thataα = bα for
α < n andan = bn + bn+1. Thena andb lead to the same prices; and ifr ands are the
return vectors thenrα = sα for α < n.

The second axiom says that if we scale the units of commodityi by a positive scalarλ,
the returns and prices remain the same except for theirith components, which are rescaled
accordingly.

Axiom 2 (Invariance). Supposea, b ∈ S(n) are such that for allα, bα� = λaα� for k1 +· · ·+
ki−1 + 1 ≤ l ≤ k1 + · · · + ki andbαl = aαl otherwise. Letp, q be the prices and letrα, sα

be the returns resulting froma, b, respectively. Thenpi = λqi, andsαi = λrαi and the other
components of the prices and return vectors are unchanged.

The next axiom captures the crucial, and anonymous, role played by prices in mediating
trade.

Axiom 3 (Price mediation). Letr andsbe the returns corresponding toa, b ∈ S(n). Suppose
thata andb lead to the same price vector, and thataα = bβ for two tradersα, β; thenrα

equalssβ.

It is easier (and sufficient) to state the last axiom for the special case of two traders. Let
Ri be the set of return vectors for trader 1 as he varies his signals inS[i], and trader 2 varies
his signals inS+.

Axiom 4 (Accessibility). For each commodityi, the setRi is closed.

3. The main results

To state our first result it is convenient to introduce the notion of aproduct of two
mechanisms ondisjoint commodity sets. This is the mechanism whose commodity set is
the union; whose signal space is the Cartesian product; and whose price and return vectors
are theconcatenations, in the obvious manner.

Observe that we may modify the product mechanism by independently scaling the price
vectors on the two commodity sets, and that this has no effect on the returns. We will
continueto call such a modified mechanism a product of the two mechanisms.

An irreduciblemechanism is one which is not a product of two smaller mechanisms.
If T is a non-negativem × m matrix, letG(T) be the directed graph onm nodes which

has an arc fromi to j if the (i, j)th entry ofT is positive.T will be called irreducible or
completely reducible, ifG(T) has these properties.

If M is anm × k non-negative matrix, we will writeG(M) for G(MAt) whereA is
them × k auxiliary matrix defined inSection 2, andt denotes transpose. The notions of
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irreducibility and complete reducibility are defined in terms ofG(M) as above. We are now
ready to state our first result

Theorem 1. Any market mechanism satisfying the first three axioms is a product of irre-
ducible mechanisms, each of which satisfies these axioms. Moreover, an irreducible mecha-
nism satisfying these axioms determines,and is determined by,an irreducible,non-negative,
column stochastic, m × k matrixM.

For the explicit formulas in terms ofM, we refer the reader forward to the proof of
Theorem 1.

To prepare for our second (and main) result, we now make precise the notion of a
“redundant” component of a signal.

Consider a mechanism with signal spaceS, etc. as before. Fix a componentl in Ki and
let S′+ be the set of signals inS whoselth component is 0, and all other components are
strictly positive. WriteS′(n) for the set{a ∈ Sn : a1 + · · · + an ∈ S′+}, andsupposethere
is an extension of the mechanism fromS(n) to S(n)∪ S′(n), which continues to satisfy the
axioms.

In such a situation, we will say thatl is redundantif, given anya in S(n) ∪ S′(n) and a
traderα, there existsb in S′+ such that:χ(b) = χ(aα) and ifα switches to the signalb, the
prices andeveryone’s returnsremain unchanged.

If a mechanismhas a redundant component, then one gets a smaller mechanism by
deletingl, i.e. by restricting the signal space toS′(n). Iterating this procedure, one gets a
mechanism with no redundant components. We will call this anessential sub-mechanism3

of the original mechanism.
Our main result is

Theorem 2. Each mechanism satisfying the four axioms contains a unique essential sub-
mechanism that is aG-mechanism, whereG = G(M) andM is as inTheorem 1.

4. Proofs

Fix a mechanism which satisfies the axioms of the previous section, and consider an
n-tuplea = (a1, . . . , an) of signals inS(n).

By repeated application of Axiom 1, we see that the price vector is the same as it would
be if there were asingletrader sending theaggregatesignala = a1 + · · · + an. Thus, the
prices depend only on the aggregate signal. Combining this withAxiom 3, we conclude
that a trader’s return vector is a function only of his signal and the aggregate signal!

Thus, the mechanism is specified by two functions,π : S+ → P , andρ : S × S+ → C,
such that the signalsa result in the pricesp = π(a) and yield the return vectorsrα =
ρ(aα, a). Note that ifa andb are signals inS andS+, respectively, thenρ(a, b) is defined
only if b ≥ a.

3 It is clear that the “market game” based on an essential submechanism will have the same “Nash” allocations,
and the same “α-, β-cores”, etc. as that for the original mechanism.
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Lemma 1. The mapρ has a unique extension toRk × S+, that is linear in the first factor
and homogeneous of degree zero in the second.

Proof. By the efficiency of the mechanism,ρ(a, b) ≤ χ(b), for all a ≤ b; moreover ifa
anda′ in S are such thata+ a′ is less thanb, thenAxiom 1 implies the functional (Cauchy)
equationρ(a + a′, b) = ρ(a, b) + ρ(a′, b).

From Corollary 2 inAczel and Dhombres (1989, p. 35), we conclude that, for all
non-negativeλ andλ′ such thatλa + λ′a′ ≤ b, we have

ρ(λa + λ′a′, b) = λρ(a, b) + λ′ρ(a′, b). (1)

Next leta ≤ b and chooseλ ≥ 1, then the argument just given shows thatρ(λa, λb) =
λρ(a, λb). On the other hand,Axiom 2 implies that the left side equalsλρ(a, b). Comparing
these expressions we conclude that

ρ(a, b) = ρ(a, λb). (2)

Thus, even fora not less thanb, we may defineρ(a, b) via (2), by choosingλ sufficiently
large. This extendsρ to all of S × S+; and the further extension toRk × S+ follows from
(1). �

Axiom 2 shows that the range ofπ is all of P , and soAxiom 3 implies that there is a
functionτ : S × P → C such thatρ(a, b) = τ(a, π(b)). It follows from Lemma 1thatτ is
linear in the first variable.

Let 1 be them-dimensional vector of all 1’s and letM be them × k matrix such that
τ(a,1) = Ma.

Axiom 2 implies thatτ is “determined” byM in the following sense:
Forp in Rm, letDp denote them×m diagonal matrix diag{p1, . . . , pm}, and writeEp

for thek × k “extended” diagonal matrix whoseKi-diagonal entries are allpi; then, as is
easily checked,

τ(a, p) = (D−1
p MEp)a. (3)

Lemma 2. The matrixM is non-negative and column stochastic.

Proof. The non-negativity ofM follows from that ofτ.
Next, rewrite(3) as

Dpτ(a
α, p) = MEpa

α. (4)

Then1 · (MEpa
α) = 1 · Dpτ(a

α, p) = p · τ(aα, p).
Recall the auxiliary matrixAdefined inSection 2; then by the value conservation property,

the last expression equalsp ·Aaα, which may be rewritten as1 ·AEpaα. Sinceaα is arbitrary,
we get1M = 1A, which implies the column stochasticity ofM. �

We show next that the price vector satisfies a system of linear equations involvingM, A
and the aggregate signal.
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For b in S+, let Db be the correspondingk × k diagonal matrix. PutCb = MDbA
t ,

∆b = ADbA
t , andTb = ∆−1

b Cb. Thus,Cb is them×m matrix whoseith column is a linear
combination of theKi-columns ofM with coefficients given by theKi-components ofb.
SinceM is column stochastic, it follows that∆b is the diagonal matrix of the column sums
of Cb, and thus we see thatTb is anm × m, non-negative, column stochastic matrix.

Lemma 3. For a in S(n), write b = a, p = π(b); then

Tbp = p. (5)

Proof. Summing(4)overαwe getDpτ(b, p) = MEpb. By the efficiency of the mechanism
we haveτ(b, p) = Ab, and combining this with the identityAEp = DpA gives (M −
A)Epb = 0. Finally, using the identityEpb = DbA

tp, we get(Cb − ∆b)p = 0, and(5)
follows. �

Lemma 4. M is completely reducible.

Proof. SinceTb is column-stochastic it may be regarded as the transition matrix of a Markov
process. Then(5) shows thatp (after normalizing so that

∑
pi = 1) is a steady state

probability distribution forTb.
By assumption, forb in S+, (5), has apositivesolution. Arguing as inLemma 1in Sahi

and Yao (1989), we conclude thatG(Tb) must be completely reducible. (In Markovian ter-
minology, this corresponds to the remark that such a process cannot contain any “transient”
states.) SinceG(Tb) = G(M), the result follows. �

Proof of Theorem 1. The complete reducibility ofG(M) implies that the set of nodes
(commodities) can be partitioned in such a manner thatG(M) becomes an arc-disjoint
union of irreducible subgraphs (on the subsets of the partition).

We will write I ′ andG′ for a typical subset ofI and its irreducible subgraph, and use
“primes” to denote the restriction of various matrices and vectors toI ′. Complete reducibility
means thatM is “block-diagonal” with blocks corresponding to the variousM ′. Thus, the
equations (3)and(5) decompose overeachI ′ to give

τ(a′, p′) = (D−1
p′ M

′Ep′)a′, (6)

Tb′p′ = p′. (7)

The irreducibility ofG′ implies that, up to a scalar multiple,p′ is uniquelydetermined
by (7), which we may rewrite asCb′p′ = ∆b′p′.

If G′ has only 1 node, we setp′ equal to 1, say; while ifG′ has more than 1 node, letp′ be
the vector whose components are the cofactors of the entries of the first row of(∆b′ −Cb′).
It follows from Lemma 2of Sahi and Yao (1989)thatp′ is a positive vector and that it
satisfies(7).

Now using(6), we get an mechanismdefined on eachI ′ which iscompletelydetermined
by the irreducible matrixM ′. It is easy to check that each of these mechanisms satisfies the
axioms, is irreducible, and that the original mechanism is their product. �
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Proof of Theorem 2. In view of Theorem 1, we may restrict our attention to an irreducible
mechanism with matrixM. Fix a commodityi, and letI be the set of commodities for which
the corresponding entry is positive in at leastoneof theKi-columns ofM.

If Ri is as inAxiom 4, it is easy to see from(3) that Ri is contained in the “face”
Fi = {v ∈ C|vj = 0 if j is not inI}. For eacha in S[i] and an arbitraryb in S+, we can
chooseλ so thatλb−a is inS+. This shows thatRi contains{ρ(a, λb−a)|a ∈ S[i], b ∈ S+}.

Sinceπ(λb) = π(b) and since the range ofπ is all of P , it follows thatRi contains the
set{τ(a, p)|a ∈ S[i], p ∈ P}. From(3) it follows that this set is theinterior of Fi. Axiom 4
now implies thatRi must beequalto Fi.

In particular, for eachj in I it is possible to get a return that is positiveonly in its jth
component. From(3) we see that this implies that for each suchj, thejth unit vector must
occur as one of theKi-columns ofM.

Given a signalbby trader 2, ifa is any signal inS[i] such thata+b is inS+, it follows easily
from (3) and(5) that the price and return vectors dependonlyon the linear combination of
Ki weighted bya.

Since theKi columns ofM contain enough vectors to express each column as their convex
combination, it follows that we may replacea by a signala′ which satisfiesχ(a′) = χ(a),
involvesonly these unit vectors and such that the prices and returns are unchanged.

This shows that if we restrict the mechanism to the unit vectors for eachKi we get an
essential sub-mechanism. Moreover, this sub-mechanism is unique, except for the degen-
erate case in which the same unit vector occurs more than once among theKi-columns of
the original mechanism. �

5. Remarks

1. Pre-price analysis: Let us drop prices from the picture altogether, and think of the mech-
anism as only producing returns. LetAxiom 2′ be the axiom obtained fromAxiom 2after
suppressing the price effects. Also instead ofAxiom 3, directly postulate theanonymity
Axiom 3′ that if any two signals are transposed, the output of the mechanism remains
the same with the corresponding returns also transposed.

Arguing along the same lines as our proof ofLemma 1, one obtains the following

Proposition. Any mechanism for which Axioms 1, 2′ and3′ hold, determines, and is
determined by, a continuous mapb �→ Mb fromS+ to the space of non-negativem× k

matrices, satisfying(i) Mbb = Ab, and (ii) MEvb = DvMbE
−1
v , for all v in Rm++.

Moreover, the correspondence betweenMb andρ is given by(iii) ρ(a, b) = Mba.
(SeeSection 2and(3) for the definitions ofA, Dv andEv.)

2. The value axiom(an alternative toinvariance): Let us weakenAxiom 2 by restricting
attention to the effect ofuniformscaling in all commodities. In addition, assume directly
that the range ofπ is all of P , and that the commodity-wise values of a trader’s return
vector depend only the component-wise values of his signal. In the notation of(3),
this means that there is a functionφ, say, such thatφ(Epa) = Dpτ(a, p) for all a
andp.
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Then our results continue to hold. Indeed, replacinga by E−1
p a, we getφ(a) =

Dpτ(E
−1
p a, p), from which it follows thatφ is linear. WritingM for its matrix, we

recover(3), and the rest of the arguments are unchanged.
3. The maneuverability axiom(an alternative toaccessibility): Recall the mapτ : S×P →

C, whereτ(a, p) is the return to a trader if his signal isa, and the prices arep. (The
existence of this map is equivalent to the price mediation axiom).

For any subsetI of commodities, we define the correspondingfaceof C = Rm+ to
be the set{v ∈ C : vi > 0 for i ∈ I, vi = 0 for i /∈ I}. A subset ofC will be called
quasi-openif its intersection with each face is open in that face.

The maneuverability axiom is: for anyp ∈ P and each commodityi, the set{τ(a, p) :
a ∈ S[i]} is quasi-open.

If we assume Axioms 1–3 and the maneuverability axiom, thenTheorem 2continues
to hold.

The mapτ and the maneuverability axiom are best understood in the situation where
we have acontinuumof traders. Then prices remain unchanged as any single trader
varies his signals. The basic idea behind this axiom is to ensure that the mechanism
does not impose ad hoc limitations on trade. In other words, if an agent can obtain some
positive returns by signals in a single commodity, then, by arbitrary variations of such
signals, he should be able to maneuver those returns freely.

4. Strong maneuverability and the Shapley mechanism: Suppose we strengthen the ma-
neuverability axiom by replacing the word “quasi-open” with “open inRm+”. It can
easily be shown that this singles out the Shapley mechanism.

5. Extensions of the domain: Consider a mechanism (with its associatedM), and ann-tuple
of signalsa = (a1, . . . , an). Define the subgraphG of Digraph(M) by deleting arcs
on which zero total weight is placed bya. If G is completely reducible, then it is clear
from our analysis that the mechanism can be extended continuously toa. For other
kinds of zeros ina it is equally clear that it cannot be so extended, i.e. an “irremovable”
discontinuity exists ata. Various rules (like confiscation, or return, of commodities
quoted by traders ina) have been adopted to well-define the mechanism at such points
(Shapley and Shubik, 1977).

6. Restrictions on the mechanism: First, suppose that commodityi is “exchangeable” for
j in the mechanism, i.e. by signals denominated ini alone, a trader can obtain positive
returns inj; along with, perhaps, other commodities. (How much he gets ofj will
depend upon prices. Also notice, by the way, that through such signals, he affects not
only the two pricespi andpj but, for many graphs, thewholevectorp.) It is often
natural to make asymmetryassumption on commodities: ifi is exchangeable forj, then
j is also exchangeable fori. With this, we can replace the directed graphs by undirected
graphs.

Next one might suppose that, starting with only commodityi, if a trader engages
in enough rounds of trade, then it should be possible to obtain positive amounts of
j, for anyj �= i. In short, assume that the mechanism does not prohibit theultimate
conversion ofi to j and, at most, repeated trading is needed to do so. If we postulate
thisexchangeabilityaxiom, then we can restrict attention to irreducible graphs.

7. Oligopolistic effect: All of our mechanisms have the property that if thei-components
of a signal are increased (keeping other components fixed), then this has the effect of
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raising the prices of all the other commodities relative toi. This is a corollary of the
following

Proposition. Supposeb andb′ in S+ are such that each entry of columni ofCb′ is at
least as large as the corresponding entry ofCb; and all other entries inCb′ andCb are
equal. Then, for all j �= i

πj(b
′)

πi(b′)
≥ πj(b)

πi(b)
.

(SeeSection 4for the definitions ofπ andCb.)

Proof. Without loss of generality, leti = 1 andj = 2, and writeB, B′ for ∆b −
Cb,∆b′ −Cb′ . FromLemma 3it follows that the cofactors of any row ofB,B′ give the
pricesπ(b), π(b′). Let us choose row 1 and writep, p′ for π(b), π(b′). Then

pi = B1i, p
′
i = B′

1i,

whereB1i, B′
1i are the cofactors of the 1ith entry ofB, B′.

SinceB andB′ differ only in the first column, we have

p1 = B11 = B′
11 = p′

1.

To prove the Proposition, we need to show thatB′
12 ≥ B12.

LetM andM ′ be the (1,2) minor matrices ofB andB′. ThenB12 = −detM,B′
12 =

−detM ′. Notice thatM andM ′ are identical, except for their first columns, where the
entries ofM ′ are at least as negative as the corresponding entries ofM. Expanding detM
and detM ′ along the first columns, it suffices to show that all the cofactors of the first
column ofM (which are the same as forM ′) are non-negative. This is a consequence
of the following

Claim. IfE is a matrix with positive diagonal entries,non-positive off-diagonal entries,
and non-negative column sums, then all cofactors ofE are non-negative.

Proof of Claim. First consider the case when the off-diagonal entries are negative and
the column sums positive. By rescaling the columns if necessary, we may reduce to the
caseE = I −F , whereF is a positive matrix, each whose column-sums is strictly less
than one. Then the infinite series

I + F + F2 + · · · ,
converges to a positive matrix which is the inverse ofE. Let Ecof denote the matrix
whoseij th entry is theji th cofactor ofE. Then

E−1 = (detE)−1Ecof.

It remains only to show that detE is positive. To see this, considerf(λ) = det(I−λF).
By the same argument as aboveI − λF is invertible, hencef(λ) �= 0 for 0 ≤ λ ≤ 1.
Sincef(0) = 1 > 0, f(1) must be positive.
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This establishes the claim for the special case. However, since the cofactors are
continuous functions of the entries of the matrix, the general case follows by a simple
limiting argument, verifying the claim. �

The Proposition follows by observing that the (1,1) minor matrix ofB satisfies the
conditions of the claim, and the cofactors that we are interested in are those of this
minor matrix.

8. A question of convexity: Finally, we describe an open problem for such mechanisms.
Take a mechanism that satisfies Axioms 1 to 4, and consider a trader with a fixed,

finite endowment in the various commodities. For anyfixedchoice of signals by the
others, his returns are a function of his signal alone. LetH be the set of final bundles
which he can achieve by sending signals whichdo not exceedhis endowment; and let
H̄ be the comprehensive hull ofH , i.e.H̄ = {x ∈ Rm+ : x ≤ y for somey ∈ H}.

Is H̄ always convex?
This is important for the Nash analysis of the strategic game based on the mechanism

(seeDubey and Shubik, 1978; Amir et al., 1990; Sahi and Yao, 1989).
The Shapley–Shubik mechanism is discussed inDubey and Shubik (1978); more

generally, the case of a “tree” is analyzed inAmir et al. (1990); and, finally, the Shapley
mechanism is treated inSahi and Yao (1989). In each of these instances, the setH̄ is
convex. The proof inAmir et al. (1990)andSahi and Yao (1989)turns on the following
simple fact: for fixed signals by the others, the final bundle of a trader can be computed
from the prices alone, i.e.hissignal affects his final bundle only via the prices!

Let P̄ be the set of prices that the trader can generate, given a fixed endowment and
fixed signals by the others. The setP̄ is defined to begeometrically convexif, for anyp,
q in P̄ , the vector(

√
p1q1, . . . ,

√
pmqm) is in P̄ . Using the fact above, it can be easily

shown (as inAmir et al., 1990; Sahi and Yao, 1989) that

Geometric convexity of̄P ⇒ convexity ofH̄.

As shown inAmir et al. (1990)andSahi and Yao (1989), P̄ is geometrically convex
in the Shapley–Shubik and Shapley mechanisms. One might wonder whether this is so
for all the mechanisms satisfying our axioms. Unfortunately this is false! The simplest
instance whenP̄ fails to be geometrically convex is for the mechanism with four
commodities whose underlying (undirected graph) is “the square with one diagonal”.

However, numerical evidence from several computer trials carried out by G. Koren
at SUNY Stony Brook, seems to indicate thatH̄ is nevertheless convex. Thus, the
question of the convexity of̄H remains open.

9. IntermediateG-mechanisms: As was pointed out to us by Gael Giraud, the foreign
exchange market may furnish a practical instance of aG-mechanism that lies in between
the Shapley–Shubik and the Shapley mechanisms. No one currency can be singled out
to play the role of money in that it, and it alone, is linked to other currencies. This rules
out the Shapley–Shubik mechanism. On the other hand, not every pair of currencies
can be directly exchanged for each other (e.g. Australian dollars do not trade against
Hong Kong dollars on European markets). This rules out the Shapley mechanism also.

10. The limit-price mechanism of Mertens: Once again it was pointed out to us by Gael
Giraud that a similar typology in terms ofG-mechanisms can perhaps be embedded
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in the framework of limit-price mechanismsá la Jean-FrançoisMertens (this issue). It
might “suffice” to let the quantity-signals depend upon limit-prices. Thus the axioma-
tization given here could provide a first step towards an axiomatization of limit-price
mechanisms in terms of the graph of commodities for which limit-price orders can be
sent to the market against each other.
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