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Abstract

In this paper we construct a family of small unitary representations for real semisimple Lie

groups associated with Jordan algebras. These representations are realized on L2-spaces of

certain orbits in the Jordan algebra. The representations are spherical and one of our key

results is a precise L2-estimate for the Fourier transform of the spherical vector. We also

consider the tensor products of these representations and describe their decomposition.
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0. Introduction

This paper is the culmination of a series dedicated to the problem of constructing
explicit analytic models for small unitary representations of certain semisimple Lie
groups (see [S1,S2,S3,DS1,DS2] and also [SS,KS]).

The groups G that we consider arise from real semisimple Jordan algebras via the
Tits–Koecher–Kantor construction. Such a G is characterized by the existence of a

parabolic subgroup P ¼ LN which is conjugate to its opposite P ¼ LN; and for

which N and N are abelian. The Lie algebra n admits a real semisimple Jordan
algebra structure and we write n for its rank.

In this situation, the Levi component L has a finite number of orbits on n and each
orbit has a rank pn: Each non-open orbit O (rank on) admits an L-equivariant
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measure dm which is unique up to scalar multiples. (The open orbits admit one-

parameter families of such measures.) By Mackey theory, the Hilbert space HO ¼
L2ðO; dmÞ carries a natural irreducible unitary representation pO of P; and we
consider the following two problems:

* Extend pO to a unitary representation of G:
* Decompose pO1#?#pOs ; for rank O1 þ?þ rank Ospn:

For Euclidean Jordan algebras these problems were solved in [S1,S2,DS1]. Thus in
this paper we only consider non-Euclidean Jordan algebras. As explained in [DS2],
one has to exclude rank 1 orbits in rank 2 Jordan algebras Rp;q ðpaqÞ—we shall call
these orbits inadmissible and the remaining non-open orbits admissible. In this paper
we prove:

Theorem 0.1. For each admissible orbit O; the representation pO of P extends to an

irreducible spherical unitary representation of G on HO:

Now suppose O1;y;Os are admissible non-open orbits in N such that rank O1 þ
?þ rankOspn: In Section 3.2 we define a reductive homogeneous space G0=H 0;

essentially the generic fiber of the addition map from O1 �?� Os to N; and
consider the decomposition of the quasi-regular representation

L2ðG0=H 0Þ ¼
Z "bG0G0

mðsÞs drðsÞ;

where mðsÞ is the multiplicity function and drðsÞ is the Plancherel measure.

Theorem 0.2. Let O1;y;Os and G0;H 0 be as above; then there is a map y from the H 0-
spherical dual of G0 to the unitary dual of G such that

pO1#?#pOs ¼
Z "bG0G0

mðsÞyðsÞ drðsÞ:

Our approach entails three different representation-theoretic techniques. We need
to consider:

(a) Harish-Chandra modules for semisimple groups;
(b) operator algebras for parabolic subgroups; and
(c) Fourier analysis for abelian nilradicals.

The algebraic considerations (Harish-Chandra modules) were carried out in [S3].
The necessary operator-algebraic results (C�-algebras, von Neumann algebras)
were obtained in [DS1,DS2]. The missing ingredient, provided by this paper,
involves abelian Fourier analysis. The key result (Proposition 2.2) is the proof
that a certain function g (eventually, the ‘‘spherical’’ vector in pO) belongs to

L2ðO; dmÞ:
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For rank 1 orbits this result was obtained in [DS2] by establishing a close
connection between this function and a certain one-variable Bessel K-function. The

required L2-estimate then followed from a precise knowledge of the singularity of
the Bessel K-function at 0:

For higher rank orbits, we expect that there should exist a similar connection
between the spherical vectors and multivariate Bessel K-functions. However in order to
exploit this connection one would have to first develop the theory of such functions,
possibly along the lines of the theory of the multivariate Bessel J-functions of [Op].

While we feel that the connection with multivariate Bessel K-functions is of interest
and should be pursued further, in the present paper we follow a different approach.
This approach allows us to obtain the desired estimate directly, obviating the need to
first study Bessel functions. The key here is a ‘‘stability’’ result (Lemma 2.12) which
transfers the problem from a non-open orbit to a related problem on the open orbit
for the smaller group. The open orbit problem turns out to be easier to solve.

This approach was inspired in part by a recent paper of Shimura [Sh]. We thank
L. Barchini for drawing our attention to this paper.

1. Preliminaries

In this section we recall basic facts about the Tits–Kantor–Koecher construction.
All results of this section are well-known. More details may be found in [KS,DS2]
and in the references therein (in particular, [BK,Lo]). This construction associates to
a real simple Jordan algebra, a pair ðG;PÞ; where G is a real simple Lie group with
Cartan involution y; and maximal compact subgroup K ; and P ¼ LN is a parabolic
subgroup.

In the context of Lie theory, these pairs can be characterized as follows:

(a) N is abelian,
(b) P is G-conjugate to its opposite parabolic P ¼ yðPÞ ¼ LN:

Conditions (a) and (b) each give rise to a symmetric space denoted by K=M and
L=H; respectively, and much of the relevant information about the Jordan algebra
and the associated pair ðG;PÞ can be described in a simple and coherent manner in
terms of these symmetric spaces. This makes it possible to have a uniform discussion
for the most part, with only some occasional arguments requiring case-by-case
considerations.

We follow the practice of denoting the real Lie algebras of various Lie groups by
the corresponding fraktur letters; with the exception of p which will denote instead
the �1 eigenspace of y in the Cartan decomposition g ¼ k"p:

1.1. The symmetric space K=M

Condition (a) from the beginning of this section implies that L is a symmetric

subgroup of G; and M ¼ K-L is a symmetric subgroup of K: Let t be a Cartan
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subspace in the orthogonal complement of m in k: The real rank of N as a Jordan
algebra is n ¼ dimR t: The roots of tC in gC always form a root system of type Cn; and
we fix a basis fg1; g2;y; gng of t� such that

SðtC; gCÞ ¼ f7ðgi7gjÞ=2;7gjg:

For the subsystem S ¼ SðtC; kCÞ; there are three possibilities:

An�1 ¼ f7ðgi � gjÞ=2g; Dn ¼ f7ðgi7gjÞ=2g; and Cn:

The first of these cases arises precisely when N is a Euclidean Jordan algebra. This
case was studied in [S1], therefore we restrict our attention to the last two cases. If S
is Cn; there are two multiplicities, corresponding to the short and long roots, which
we denote by d and e; respectively. If S is Dn; and na2; then there is a single
multiplicity, which we denote by d; so that Dn may be regarded as a special case of
Cn; with e ¼ 0:

The root system D2 EA1 � A1 is reducible and there are two root multiplicities.
As mentioned in the introduction, we explicitly exclude the case when these

multiplicities are different; this corresponds to G ¼ Oðp; qÞ; with N ¼ Rp�1;q�1

ðpaqÞ: When the two multiplicities coincide ðp ¼ qÞ; we once again denote the
common multiplicity by d:

1.2. S-triples and the Cayley transform

The discussion of the various cases can be made uniform by emphasizing the
special role played by a family of n commuting SL2’s or S-triples, together with the
associated Cayley transform.

For sl2ðCÞ the Cayley transform is defined by c ¼ exp ad pi
4
ðX þ Y Þ ¼

exp ad pi
4
ðx þ yÞ; and satisfies cðXÞ ¼ x; cðY Þ ¼ y; cðHÞ ¼ h; where

x ¼
0 1

0 0

" #
; y ¼

0 0

1 0

" #
; h ¼

1 0

0 �1

" #
;

X ¼ 1

2

i 1

1 �i

" #
; Y ¼ 1

2

�i 1

1 i

" #
; H ¼ i

0 1

�1 0

" #
:

Now
P

ðtC; gCÞ is a root system of type Cn; with root multiplicities:

dim k7ðgi7gjÞ=2 ¼ d; dim p7ðgi7gjÞ=2 ¼ d;

dim k7gi
¼ e; dim p7gi

¼ 1:
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We fix homomorphisms Cj : sl2ðCÞ-gC such that CjðXÞApgj
; and we write

Xj ¼ CjðXÞ; xj ¼ CjðxÞ; yj ¼ CjðyÞ;y;

X ¼
X

Xj; x ¼
X

xj; y ¼
X

yj;y :

The Cayley transform of gC is the product

c ¼ exp ad
pi

4
ðxþ yÞ ¼ exp ad

pi

4
ðXþ YÞ:

We write a ¼ cðitÞ for the Cayley transform of it: This is the abelian subalgebra of g

spanned by h1;y; hn:

1.3. The symmetric space L=H

Let HCL be the stabilizer of yAn; then condition (b) from the beginning of this
section implies that L=H is a symmetric space. The involution s for this symmetric
space consists of conjugation by a suitable element of K—corresponding to
condition (b).

Example. If G ¼ O2n;2n; then L ¼ GL2nðRÞ and N is the Jordan algebra of 2n � 2n

real skew-symmetric matrices, and H ¼ SpnðRÞ:
In the present situation L=H is always non-Riemannian; and if we consider the

Cartan decompositions for y and s

l ¼ m þ r; l ¼ h þ q;

then a is a Cartan subspace in q-r: Writing 2ei ¼ gi 3 c
�1 we have

Sða; gÞ ¼ f7ei7ej;72ejg; Sða; lÞ ¼ f7ðei � ejÞg;

Sða; nÞ ¼ fei þ ej; 2ejg; Sða; nÞ ¼ f�ei � ej ;�2ejg:

We observe that for a in a we have

tr adnðaÞ ¼ �2d
X

ðei þ ejÞ � ðe þ 1Þ
X

2ej

h i
ðaÞ ¼ �2rnðaÞ;

where n ¼ e1 þ e2 þ?þ en; r ¼ dðn � 1Þ þ ðe þ 1Þ:
Thus we can define characters n of l; and en of L by the formulas

nðZÞ ¼ � 1

2r

	 

tr adn ðZÞ; enðlÞ ¼ ln ¼ j det Adn lj�1=ð2rÞ:

Extending trivially to N (resp. N) we obtain positive characters of the groups P

(resp. P), which we write as g/enðgÞ; or as g/gn:
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To complete the connection with the Jordan structure, we note that the Jordan

norm f on n is a polynomial function which transforms by the character e�2n of L:
Finally, we observe that the Killing form on g gives a pairing between n and n which
we rescale by setting /x1; y1S ¼ 1:

1.4. Orbits

As is well known, the orbits of L on n are parametrized by their rank, with the
rank k orbit given by O ¼ L � ðy1 þ?þ ykÞ: If k ¼ n; the stabilizer of y1 þ?þ yk

is the symmetric subgroup H described previously. We now discuss the remaining
orbits; to simplify notation we fix k and write

y1 ¼ y1 þ?þ yk:

In Jordan algebra terms, y1 is a Peirce idempotent and considering the 1 and 0

Peirce-eigenspaces of y1; we obtain smaller Jordan algebras n1 and n0 with identity

elements y1 and y0 ¼ ykþ1 þ?þ yn; respectively. The corresponding structure
groups L1 and L0 are naturally the reductive subgroups of L: Subgroups of L1 and
L0 will be distinguished by subscripts 1 and 0, respectively. For example,

M1 ¼ M-L1; M0 ¼ M-L0; H1 ¼ H-L1; a1 ¼ a-l1:

Thus H1 is the stabilizer of y1 in L1; and the full stabilizer of y1 in L is given by

S ¼ ðH1 � L0Þ � U : ð1Þ

Here U is abelian, and its Lie algebra u is spanned by the root spaces l�eiþej

ð1pipkojpnÞ:

Example. Again, take G ¼ O2n;2n: One has L ¼ GL2nðRÞ; L1 ¼ GL2kðRÞ and L0 ¼
GL2ðn�kÞðRÞ: Then H1 ¼ H-L1 ¼ SpkðRÞ and S ¼ ðSpkðRÞ �GL2ðn�kÞðRÞÞ � U ;

where U is a vector space of 2ðn � kÞ � 2k real matrices.
We have

l ¼ s þ ðq1 þ uÞ; where q1 ¼ q-l1; u ¼ yu:

The orbits of L on n carry equivariant measures, which we now describe. Write en

for the positive character of L defined in Section 1.3 and let r ¼ dðn � 1Þ þ ðe þ 1Þ be
as before. Then we have

Lemma 1.1. (1) The Lebesgue measure dl on n is e2rn-equivariant.

(2) The rank k-orbit carries an e2dkn-equivariant measure dm ¼ dmk:

The proof is straightforward. We now describe a ‘‘polar coordinates’’ expression
for these equivariant measures. In [Lo] it is shown that the elements

fz1y1 þ?þ zkyk j z14z24?4zk40g
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give a complete set of orbit representatives for the action of M ¼ L-K on the rank

k orbit. Accordingly, we write CkCRk for the cone

Ck ¼ fz ¼ ðz1; z2;y; zkÞ j z14z24?4zk40g;

and for m in M; z in Ck we write

m � z ¼ Ad mðz1y1 þ?þ zkykÞAn:

For z in Ck we introduce the notation

PkðzÞ ¼ z1?zk; VkðzÞ ¼
Y

1piojpk

½z2
i � z2

j �; d�
k z ¼

Yk

j¼1

dzj

zj

;

where each dzj denotes the Lebesgue measure on R: Then we have:

Proposition 1.2. Let dl be the Lebesgue measure on n; thenZ
n

fdl ¼ c

Z
Cn

Z
M

f ðm � zÞ dm

� 
d�z; where d�z ¼ ½Pn�eþ1½Vn�d d�

n z:

Proposition 1.3. Let dm be the equivariant measure on the rank k orbit O; thenZ
O

fdm ¼ c

Z
Ck

Z
M

f ðm � zÞ dm

� 
dkz; where dkz ¼ ½Pn�kþ1

k Vk�d d�
k z:

The scalars c appearing in the above formulas are independent of f and
depend only on the normalization of the measures dl and dm: These formulas
can be obtained by the usual techniques (cf. [Sc, 8.1], also [OS]). For subsequent
purposes we also need to consider the Lebesgue measure on n: For m in M; z in Cn;
we write

m 3 z ¼ Ad mðz1x1 þ?þ znxnÞAn: ð2Þ

Since y : n-n satisfies yðm 3 zÞ ¼ m � z; Proposition 1.2 implies

Corollary 1.4. Let dl be the Lebesgue measure on n; then

Z
n

fdl ¼ c

Z
Cn

Z
M

f ðm 3 zÞ dm

� 
d�z; where d�z ¼ ½Pn�eþ1½Vn�d d�

n z:
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2. Estimates for spherical vectors

We can relate the P-representation pO of Theorem 0.1 to a unitarizable submodule
of a certain degenerate principal series for G; which is described as follows: If w is a
character of L; we write ðpw; IðwÞÞ for the degenerate principal series representation

IndG

P
w (unnormalized smooth induction); thus

IðwÞ ¼ f fACNðGÞ j f ðlngÞ ¼ wðlÞf ðgÞ for lAL; nAN; gAGg

and the group G acts by right translations. By virtue of the Gelfand–Naimark

decomposition GEPN; functions from IðwÞ are determined by their restriction to N:
Combining this with the exponential map we can identify IðwÞ with a subspace EðwÞ
of CNðnÞ: We refer to this as the noncompact picture.

For tAR; we write IðtÞ; EðtÞ for IðetnÞ; EðetnÞ; more generally, if e : L-T is a
unitary character, we write Iðt; eÞ; Eðt; eÞ for Iðetn#eÞ; Eðetn#eÞ: These principal
series were studied in [S3] via the ‘‘Cayley operator’’ D which is the constant
coefficient differential operator on n; whose symbol is the Jordan norm polynomial f:
Powers of D are intertwining operators for the principal series, and their eigenvalues
on the various K-isotypic components are given by the Capelli identity of [KS].

EðtÞ is a spherical representation of G and we write Ft for the K-spherical vector.
Among the results obtained in [S3] is that for k ¼ 1;y; n � 1; the space Eð�dkÞ
contains a unitarizable spherical submodule. We need to study the Fourier
transforms of the corresponding spherical vectors

F�dk; k ¼ 1;y; n � 1:

For this we identify n with the dual of n� via the normalized Killing form from
Section 1.3. Also we fix kon; write F for the spherical vector F�dk; and write
ðO; dmÞ for the rank k orbit in n together with its equivariant measure described in
Lemma 1.1.

The main results of this section are

Proposition 2.1. The measure Fdl is a tempered distribution on n and there exists an

M-invariant function g in L1ðO; dmÞ such that

Fdl ¼ dg dmg dm:

Proposition 2.2. For kon; one has gAL2ðO; dmÞ:

We prove these propositions in the next few subsection. The strategy is as follows:
Let us write Fk;n for the function F�dk; in order to emphasize dependence on n as

well as k: Now although the above results are false in general for the open orbit
ðk ¼ nÞ; nevertheless, we can prove the desired results by reducing to a slightly
weaker estimate for k ¼ n; which turns out to be somewhat easier to prove. We
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establish this result in the next subsection and then outline the reduction procedure
in the two following subsection.

2.1. Estimates for the open orbit

As indicated above, we first consider the function

F ¼ Fn;n ¼ F�dn:

We need appropriate L2-estimates with respect to the Lebesgue measure dl on n for
the function C and its derivatives. The ‘‘straightforward’’ estimate is actually false
for the group SpnðCÞ; but it does work for the other groups G in the table in
Appendix A.2. Thus we formulate two results, one for G aSpnðCÞ and the other for
all groups:

Proposition 2.3. For all groups G other than SpnðCÞ; we have FAL2ðn; dlÞ:

Proposition 2.4. For all groups G and for all mX1; we have DmFAL2ðn; dlÞ:

For each t; the function Ft is M-invariant, and is therefore determined by the
restriction to the subspace fz1x1 þ?þ znxngDn; we start by giving an explicit
formula for the restriction.

Lemma 2.5. We have Ftðm 3 zÞ ¼
Qn

i¼1 ð1 þ z2
i Þ

t
2 for all m in M:

Proof. For the group G ¼ SL2ðRÞ this is a straightforward calculation which we
leave to the reader. In the general case, we view F as a function on G which is right

K-invariant, and left P-equivariant with character etn: We now restrict F to the
subgroup SL2 �?� SL2 corresponding to the S-triples of Appendix A.2. This

restriction is right SO2 �?� SO2-invariant, and left B �?� B-equivariant with
character esn ¼ ese1 �?� esen (here B is the Borel subgroup of SL2). Thus applying
the SL2-calculation to each factor, we conclude that the restriction to z1x1 þ?þ
znxn is given as in the statement of the lemma. &

Combining this with Corollary 1.4 we obtain the following estimate

Lemma 2.6. For to� ½dðn � 1Þ þ ðe þ 1Þ=2�; we have FtAL2ðn; dlÞ:

Proof. Combining the previous lemma with Corollary 1.4, we get

Z
jFtj2dl ¼

Z
Cn

Yn

i¼1

ze
i ð1 þ z2

i Þ
t

Y
1piojpn

ðz2
i � z2

j Þ
d
dz1dz2?dzn;
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Expanding ðz2
i � z2

j Þ
d ; we can write the integrand as a sum of terms

Yn

i¼1

zeþki

i ð1 þ z2
i Þ

t; where each kip2dðn � 1Þ:

Each of these integrals is a product of one-variable integrals which converge ifZ
N

0

xeþ2dðn�1Þð1 þ x2Þt
dxoN:

This happens if 2t þ e þ 2d n � 1ð Þo� 1; which proves the lemma. &

Corollary 2.7. If fAEðt; eÞ for some to� ½dðn � 1Þ þ ðe þ 1Þ=2� and D is any

constant coefficient differential operator, then we have DfAL2ðn; dlÞ:

Proof. The group G acts on Iðt; eÞ by right translations, and in the non-compact
picture Eðt; eÞ the Lie algebra g acts by polynomial coefficient vector fields on n: The
action of xAn is independent of ðt; eÞ and is simply the directional derivative in the
direction x: In particular, the space Eðt; eÞ is invariant for the action of constant
coefficient differential operators.

Thus f 0 � Df also belongs to Eðt; eÞ: Thus f 0 is the restriction to N of a P-

equivariant smooth function on G: Since G ¼ PK ; any such function is determined

by its restriction to K : The constant function 1 on K corresponds to the spherical
vector Ft in IðtÞ: Thus if c is the maximum of j f 0j on K ; then we have j f 0jpcFt; and
the corollary follows from the previous lemma. &

We can now prove Propositions 2.3 and 2.4 (for GaSpnðCÞÞ:

Proof of Propositions 2.3 and 2.4. (For GaSpnðCÞ). From the table in Section see
that in every case except G ¼ SpnðCÞ; we have 2d4e þ 1: Consequently, we get

�dno� ½dðn � 1Þ þ ðe þ 1Þ=2�:

Proposition 2.3 now follows from Lemma 2.6, and Proposition 2.4 follows
immediately from Corollary 2.7 for all groups except for G ¼ SpnðCÞ: &

Suppose now that G is SpnðCÞ: Then L ¼ GLnðCÞ and n is the space of n � n

complex symmetric matrices. We write V for the finite-dimensional space of
holomorphic polynomials on n spanned by all the minors of the symmetric matrix x;

and let e be the unitary character of L given by eðlÞ ¼ det l

jdet lj:

Lemma 2.8. V is a SpnðCÞ-invariant subspace of Eð1; eÞ:
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Proof. The character en of L is simply jdet lj: Therefore, the space Ið1; eÞ consists of
smooth functions on G ¼ SpnðCÞ satisfying f ðlngÞ ¼ detðlÞf ðgÞ: The group G is

generated by the elements p ¼ a�1 b

0 at

� 
AP and w ¼ 0 �1

1 0

� 
whose action in the

noncompact picture Eð1; eÞ is as follows:

p � f ðxÞ ¼ detða�1Þ f ðab þ axatÞ;

w � f ðxÞ ¼ detðxÞf ð�x�1Þ:

Evidently, transformations of the form x/c þ axat take minors of x to linear
combinations of (possibly smaller) minors; thus V is P-invariant. Also each minor of

x�1 is equal to 7 det ðxÞ�1 times the complementary minor of x; thus V is w-
invariant. Since P is a maximal parabolic subgroup, w and P generate G; and hence
the space V is G-invariant.

Now the functions in V can be lifted to P-equivariant functions on the dense open

set PN in G: The G-invariance of V implies that these functions transform finitely
under right translations by K : Therefore they extend to smooth functions on K ; and
hence on G: Thus we get VCEð1; eÞ: &

Corollary 2.9. For G ¼ SpnðCÞ; det ðxÞ belongs to the space Eð1; eÞ:

We can now finish the proof of Proposition 2.4.

Proof of Proposition 2.4. (For G ¼ SpnðCÞÞ: For G ¼ SpnðCÞ; we have d ¼ 1;

CðxÞ ¼ det ð1 þ xxÞ�n=2; fðxÞ ¼ detðxÞ detðxÞ; D ¼ detð@xÞ detð@xÞ: Thus

DC ¼ detð@xÞ detð@xÞ detð1 þ xxÞ�n=2: ð3Þ

Now, it is well known (see e.g. [KS]) that for u a complex symmetric matrix

det ð@uÞ det ðuÞs ¼ const detðuÞs�1:

By a simple change of variables, we deduce that for all complex symmetric w

detð@uÞ detð1 þ wuÞs ¼ const det ðwÞ det ð1 þ wuÞs�1:

Applying this to (3), we obtain

DC ¼ const detð@xÞ det ðxÞ detð1 þ xxÞ�n=2�1:

The function det ð1 þ xxÞ�n=2�1 is the spherical vector in Eð�n � 2Þ: Also,
by the corollary above, det ðxÞ belongs to Eð1; eÞ: Each of these functions extends

to a smooth function on G with appropriate P-equivariance. Considering the
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equivariance of the product, we deduce

detðxÞ detð1 þ xxÞ�n=2�1AEð�n � 1; eÞ:

Since Dm�1detð@xÞ is a constant coefficient differential operator, we get

DmC ¼ ½const Dm�1det ð@xÞ�½det ðxÞ det ð1 þ xxÞ�n=2�1�AEð�n � 1; eÞ:

Now in the present case we have d ¼ 1; e ¼ 1; thus we get

�½dðn � 1Þ þ ðe þ 1Þ=2� ¼ �n4� n � 1

and so the result follows from Corollary 2.7. &

2.2. Proof of the L1 estimate

We fix k and denote the spherical vector Fk;n ¼ F�dk by simply F as before. To

prove estimates for F; we first relate it to the ‘‘rank 1’’ spherical vector

U ¼ F1;n ¼ F�d :

We now describe the key result in [DS2, Theorem 0.1] concerning the function U : Let

t ¼ d�e�1
2 and let Kt be the corresponding one-variable K-Bessel function; define an

M-invariant function u on the rank 1 orbit O1 ¼ L � y1CnEn� by the formula

uðz½m � y1�Þ ¼
KtðzÞ

zt
for zARþ; mAM:

Then writing dm1 for the equivariant measure on O1; we have

dudm1udm1 ¼ U dl;

where dl is the Lebesgue measure on n; and 4 denotes the Fourier transform of
tempered distributions. This result is proved in Propositions 2.1 and 2.2 of [DS2].
For our present purposes, it is crucial that t depends only on d and e but does not

depend on n:
An immediate consequence of Lemma 2.5 is the relation

F ¼ U k: ð4Þ

This in turn implies a relation between the Fourier transforms of F and U which we
now explain. We start with the following abstract situation:

Suppose A is a Lie group, w is a positive character of A; and B*C are subgroups
such that each of the homogeneous spaces A=B and A=C admit w-equivariant
measures dmA=B and dmA=C :
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Lemma 2.10. The space Z ¼ B=C admits an B-invariant measure dz; and

Cf ðaBÞ ¼
Z

Z

f ðazÞ dz

gives a well-defined operator C ¼ CA;B;C : L1ðA=CÞ-L1ðA=BÞ satisfyingZ
A=B

½Cf � dmA=B ¼
Z

A=C

f dmA=C : ð5Þ

Proof. This is completely straightforward. &

We apply the previous result to the situation where

A ¼ L; B ¼ S ¼ stabL y
1; C ¼ S0 ¼ stabL y

0

with y1 ¼ y1 þ y2 þ?þ yk as before, and y0 ¼ ðy1; y2;y; ykÞAO1 �?� O1: The

space O ¼ L=S is the rank k orbit and hence by Lemma 1.1 carries a e2dkn-

equivariant measure. On the other hand, the space O1 �?� O1 also carries a e2dkn-

equivariant measure, viz. dm0 ¼ dm1 �?� dm1; moreover in this situation, O0 ¼
L=S0 is an open subset whose complement has measure 0: Thus O0 also admits an

e2dkn-equivariant measure. Thus by the previous lemma, we obtain a well defined

operator C ¼ CL;S;S0 : L1ðO0Þ-L1ðOÞ satisfying formula (5).

Now given a function f on O1; we define functions f on O0; and f̆ on O by

f ðl � y0Þ ¼ f ðl � y1Þ?f ðl � ykÞ; f̆ ¼ Cf :

Then we have the following result:

Lemma 2.11. For u as above, put g ¼ &u ¼ Cu; then we have

dg dmg dm ¼ F dl:

Proof. It suffices to proveZ
yAO

e�i/x;yS gðyÞdmðyÞ ¼ FðxÞ:

Using /x; l � y1S ¼ /x; l � y1Sþ?þ/x; l � ykS; the left side can be rewritten asZ
e�i/x;l�y1SCuðl � y1Þdmðl � y1Þ ¼

Z
CZu dm; ð6Þ
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where Zðl � y1Þ ¼ exp ð�i/x; l � y1SÞ: By the previous lemma, this becomesZ
Zu dm0 ¼

Yk

j¼1

Z
uðl � yjÞZðl � yjÞdm1ðl � yjÞ

� 
¼ U k ¼ F: &

Proof of Proposition 2.1. In view of the previous lemma, it remains only to

prove that gAL1ðO; dmÞ: In turn, using Lemma 2.10, it suffices to show that

uAL1ðO0; dm0Þ; or equivalently that

uAL1ðO1; dm1Þ:

This is essentially contained in Proposition 2.1 of [DS2]. The key point is that by
Proposition 1.3 for k ¼ 1; we getZ

O1

u dm1 ¼
Z
Rþ

KtðzÞ
zt

zdn�1 dz:

Since KtðzÞ has exponential decay at infinity, it suffices to prove that the integral on

the right converges at 0. For this we note that
KtðzÞ

zt
has a pole of order 2t ¼ d � e � 1

at 0 if t40; and a logarithmic singularity if t ¼ 0: At any rate ðdn � 1Þ � 2t ¼
dðn � 1Þ þ e is greater than �1; which guarantees the convergence of the
integral. &

2.3. Proof of the L2 estimate

The key to the proof of Proposition 2.2 is a ‘‘stability’’ result for the function g

defined in Lemma 2.11. To state this, we temporarily write gk;n and dmk;n for g and

dm; in order to emphasize dependence on k (the rank of the orbit) and n (the rank of
the Jordan algebra). Thus Lemma 2.11 becomes

dgk;ndmk;ngk;ndmk;n ¼ Fk;n dl:

We now recall the notation n1; n0; L1; M1; etc., introduced in Section 1.4. Thus n1

is a Jordan algebra of rank k (with same values of d and e as n). By applying
the considerations of the previous section to n1 we obtain a family of functions
gj;k; j ¼ 1;y; k; defined on the various L1-orbits in n1: We are particularly

interested in the function

egg ¼ gk;k

which is defined on the open orbit eOO in n1: Now by definition we have n1Cn; and

moreover we have eOOCO; where O is the rank k orbit in n: Thus we can restrict

g ¼ gk;n from O to eOO: The crucial ‘‘stability’’ result is the following:
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Lemma 2.12. With the above notation, we have gjeOO ¼ egg:
Proof. The function egg is also defined by the analogous two-step procedure applied to
the Jordan algebra n1: We start with the M1-invariant function euu on the rank 1 orbiteOO1Cn1 corresponding to the Bessel function Kt=zt: As observed after the definition
u; the parameter t ¼ ðd � e � 1Þ=2 is independent of n: Thus we get

ujeOO1

¼ euu; ð7Þ

which is the rank 1 version of the present lemma.

Next, we consider the open L1-orbit eOO0 in eOO1 �?� eOO1; and define the analogous

function euu by the formula

euuðl � y0Þ ¼ euuðl � y1Þ?euuðl � ykÞ

for y0 ¼ ðy1;y; ykÞAeOO0 and l in L1: Comparing this with the definition of u; and
using formula (7) we deduce

ujeOO0 ¼ euu:
Now the functions g and egg are defined by the integrals

gðl � y1Þ ¼
Z

Z

uðl � zÞ dz for l in L;

eggðl � y1Þ ¼
Z
eZZ euuðl � ezzÞ dezz for l in L1; ð8Þ

where dz and dezz are the invariant measures on the homogeneous spaces

Z ¼ S=S0CL=S0 ¼ O0 and eZZ ¼ ðS-L1Þ=ðS0-L1ÞCL1=ðS0-L1Þ ¼ eOO0: However, as
in formula (1) we see that

S ¼ ððS-L1Þ � L0Þ � U ;

S0 ¼ ððS0-L1Þ � L0Þ � U :

Thus in the imbedding eOO0CO0; we have

Z ¼ eZZ:

Moreover, since both measures are L1-invariant, we have

dz ¼ dezz:
Thus the integrals in formula (8) coincide for l in L1; and the result follows. &
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Let f/f̌ denote the inverse Fourier transform which maps functions on n1 to
functions on n1: Thus

f̌ðyÞ ¼
Z

n1

ei/x;ySf ðxÞ dl;

where dl is the Lebesgue measure on n1:

Lemma 2.13. Writing eff for the Jordan norm polynomial on n1; we have

jðFk;k Þ̌ j ¼ eggjeffjd�ðeþ1Þ ¼ jeggeffd�ðeþ1Þj:

Proof. The Fourier transform of tempered distributions is defined by adjointness
from its action on Schwartz functions, and we have the relation

ď
f dlf̌ dl ¼ f dl:

Now by the definition of egg we have

degg dmegg dm ¼ Fk;k dl;

where dm is the equivariant measure on the open orbit eOOCn1: Propositions 1.2 and

1.3 imply that in polar coordinates, the measures dl and dm are given by Peþ1
k V d

k d�
k z

and Pd
kVd

k d�
k z; respectively. Thus, writing eff for the Jordan norm polynomial on n1;

we get

dm ¼ jeffjd�ðeþ1Þ
dl:

Combining these formulas we obtain the result. &

Lemma 2.14. Let eDD be the Cayley operator on n1 then for lX0 we have

jð eDDlFk;k Þ̌ j ¼ jeggefflþd�ðeþ1Þj:

Proof. If f ðxÞ is a Schwartz function on n1 and qðyÞ is a homogeneous polynomial
on n1; then we have (up to a scalar multiple)

ð@qf Þ̌ ¼ qf̌;

where @q is the constant coefficient differential operator on n1 with ‘‘symbol’’ q: Thus

the proof of the Lemma consists in establishing that the above identity continues to
hold when f (like Fk;k) is a smooth function of polynomial growth such that

f̌ AL1ðn1; dlÞ: This is fairly standard (e.g. [J, Chapter 7]); indeed by adjointness
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we have

d
qf̌ dlqf̌ dl ¼ @qðf dlÞ;

where the derivative on the right is the distributional derivative. Under the
assumption on f ; the right side equals ð@qf Þ dl; and the result follows. &

We are now in a position to prove Proposition 2.2.

Proof of Proposition 2.2. The function g is M-invariant, thus by Proposition 1.3, it
suffices to prove the convergence of the integralZ

Ck

jgðz1y1 þ?þ zkykÞj2½Pn�kþ1
k Vk�dd�

k z:

By the previous lemma, this can be rewritten asZ
Ck

jeggðz1y1 þ?þ zkykÞj2½Pn�kþ1
k Vk�dd�

k z:

Using Proposition 1.3 we can further rewrite this asZ
n1

jeggj2jefftjdl where t ¼ dðn � k þ 1Þ � e þ 1ð Þ:

Thus it suffices to prove that

jegg2efftjAL1ðn1; dlÞ: ð9Þ

Now the map f/f̌ extends as an isometry from L2ðn1; dlÞ to L2ðn1; dlÞ (after
suitable normalizations of the Lebesgue measures). Thus we have

f1; f2AL2ðn1; dlÞ ) f̌1 f̌2AL1ðn1; dlÞ; ð10Þ

we shall deduce (9) from (10) by a suitable choice of f1; f2:
Let us put

s ¼ t þ 2ðe þ 1 � dÞ ¼ dðn � k � 1Þ þ ðe þ 1Þ;

since n4k; we have s40: Now if we set

f1 ¼ eDDl1Fk;k; f2 ¼ eDDl2Fk;k; where l1 þ l2 ¼ s; ð11Þ

then by the previous lemma we have

j f̌1f̌2j ¼ egg2jeffjl1þl2�2ðeþ1�dÞ ¼ jegg2efftj: ð12Þ
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We now consider two cases: if GaSpn ðCÞ we set l1 ¼ 0 and l2 ¼ s; if G ¼ SpnðCÞ;
we set l1 ¼ 1 and l2 ¼ s � 1: In the former case we have l1; l2X0; while in the latter
case, we have e ¼ 1; whence sX2 and l1; l2X1: Thus in either case by the open orbit
estimates of Propositions 2.3 and 2.4, applied to the Jordan algebra n1; we deduce

that the functions f1 and f2 from formula (11) belong to L2ðn1; d1xÞ: Thus formula
(9) follows from (12) and (10). &

3. Proof of the main results

We now explain how to deduce Theorems 0.1 and 0.2 from the previous results. As
explained in the introduction, the arguments are very similar to those in
[S1,DS1,DS2]. Thus, we shall limit ourselves to only sketching the proofs of the
various results below.

3.1. Proof of Theorem 0.1

In order to prove Theorem 0.1, we introduce a number of spaces.
First of all, let Eð�dkÞCCNðnÞ be the space of smooth vectors in the degenerate

principal series defined in Section 2. The representation p ¼ p�dkn of the group G on
this space is by ‘‘fractional linear transformations’’, and we have

½pðlÞf �ðxÞ ¼ e�dknðlÞf ðAdl�1½x�Þ for l in L;

½pðexp x0Þf �ðxÞ ¼ f ðx þ x0Þ for x0 in n:

By Sahi [S3], the space Eð�dkÞ has an irreducible unitarizable spherical ðg;KÞ-
submodule V which we also regard as a subspace of CNðnÞ: Thus by
Harish-Chandra theory, the Hilbert space closure H of V with respect to the
ðg;KÞ-invariant norm carries an irreducible unitary representation of G:

For convenience, we first describe H as the closure of a G-invariant space. For
this we introduce the space V consisting of those vectors in Ið�dkÞ whose restriction
to K ; and subsequent expansion in K-isotypic components only involves the K-types
of V : Since V is ðg;KÞ-invariant, the space V is G-invariant and we have the
following result.

Lemma 3.1. Functions in V have finite H-norm and H is the closure of V:

Proof. This is a consequence of a general result due to Casselman–Wallach on the
smooth vectors of a representation. In the present situation, one can also give an
alternative proof along the lines of the remark in Section 2.4 of [DS2] as follows.

First of all, the K-types of V have multiplicity 1, and have highest weights of the
form

m1g1 þ?þ mkgk;
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where m1X?XmkX0 and g1;y; gk are as in Section 1.1. Moreover, the H-norm
on each K-type is computed explicitly in [S3] and the ratio of the H-norm to the

L2ðKÞ-norm grows at most polynomially in ðm1;y;mkÞ: On the other hand by the

Riemann–Lebesgue lemma for f in V; the L2ðKÞ-norms of its K-isotypic
components decay rapidly. Thus such an f will have finite H-norm. Evidently since
VCV; the closure of V is H as well. &

Next, recall the space HO ¼ L2ðO; dmÞ; by Mackey theory, this space carries a
natural irreducible unitary representation pO of P; which is given by the following
explicit formulas:

½pOðlÞc�ðyÞ ¼ edknðlÞcðAd l�1½y�Þ for l in L;

½pOðexp xÞc�ðyÞ ¼ e�i/x;yScðyÞ for x in n;

where /x; yS is the normalized Killing form of Section 1.3. We shall prove Theorem
0.1 by constructing a unitary P-isomorphism I between ðpjP;HÞ and ðpO;HOÞ:

We first define I on a suitable subspace of H: For this, let CðGÞ be the

convolution algebra of smooth L1 functions on G: Then by standard arguments, p
extends to a representation of CðGÞ on V and we define

W ¼ pðCðGÞÞFCV;

where F ¼ F�dk is the spherical vector in Ið�dkÞ: Since G ¼ PK and F is K-fixed, we
also have

W ¼ pðCðPÞÞF;

and we shall prove the following result:

Lemma 3.2. For each f in W there is a unique I ðf ÞAHO such that

f dl ¼ dIðfÞdmIðfÞdm;

as tempered distributions. Furthermore, for all FACðPÞ we have

I 3 pðFÞ ¼ pOðFÞ 3I: ð13Þ

Proof. By Proposition 2.2, for F ¼ F�dk we have

F dl ¼ dcdmcdm;

where cAHO; or, equivalently,

FðxÞ ¼
Z
O

e�i/x;yScðyÞdmðyÞ:
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Now for l in L; by Lemma 1.1 we haveZ
O

e�i/x;yS½pOðlÞc�ðyÞ dmðyÞ ¼ edknðlÞ
Z
O

e�i/x;yScðAd l�1½y�Þ dmðyÞ

¼ edknðlÞe�2dknðlÞ
Z
O

e�i/x;Ad l½y�ScðyÞdmðyÞ

¼ e�dknðlÞ
Z
O

e�i/Ad l�1½x�;yScðyÞdmðyÞ ¼ pðlÞ f :

Similarly for x0 in n; we haveZ
O

e�i/x;yS½pOðexp x0Þc�ðyÞ dmðyÞ ¼
Z
O

e�i/xþx0;yScðyÞ dmðyÞ ¼ pðexp x0Þ f :

Thus for any FACðPÞ; we have

½pðFÞF� dl ¼ ð½pOðFÞc� dm bÞÞ
and we can define I by the formula

IðpðFÞFÞ ¼ pOðFÞc:

Then I satisfies the conditions of the lemma. The uniqueness is clear. &

We can now finish the proof of Theorem 0.1. Given the lemma above, the proof of
the result proceeds along lines similar to [S1,DS2].

Proof of Theorem 0.1. By the previous lemma, the space W1 ¼ IðWÞ is a CðPÞ-
invariant subspace of HO; and moreover we can equip it with a second P-invariant
norm, namely that transferred from H (see the proof of [DS2, Theorem 2.10] for the
explicit construction of this second measure).

Now as explained in [S1, 3.3], it follows from [P] thatW1 contains a further CðPÞ-
invariant subspace W2 on which the two norms coincide (up to a scalar multiple
which we normalize to be 1 by rescaling I).

Since HO is irreducible, W2 is dense in HO and thus HO can be regarded as the
closure of W2 with respect to the H-norm. It follows that the two norms agree on
W1 as well, and thus the map

I�1 :W1-W

extends to an isometric P-invariant imbedding J of HO into H: Now the image of
J is closed, and contains a G-invariant subspace (namely WÞ; thus since H is an
irreducible representation, it follows that J is surjective as well. Thus J is a unitary
intertwining operator between ðpO;HOÞ and ðpjP;HÞ: The required extension of

ðpO;HOÞ to G is now given by simply transferring the representation from ðp;HÞ
via J�1: &
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3.2. Proof of Theorem 0.2

We now study tensor products of our representations pO: The analogous study for
conformal groups of Euclidean Jordan algebras was conducted in [DS1].

Since the statements and proofs from [DS1] can be transferred to our present
(non-Euclidean) setting without substantial changes, we will only sketch some of the
arguments below.

Fix sX2 and a collection of positive integers k1;y; ks satisfying

k ¼ k1 þ?þ kspn:

For each i ¼ 1;y; s; let Oi be the L-orbit on n of rank ki; with L-equivariant

measure dmi: Let pOi be the unitary representation of G on the space L2ðOi; dmiÞ as

described in Theorem 0.1. We wish to study the tensor product representation

P ¼ pO1#?#pOs

which can be realized explicitly on the space L2ðO1 �?� Os; dm1 �?� dmsÞ:
Let y1;y; yn be as in Section 1.2, and define

vi ¼ ymiþ1 þ ymiþ2 þ?þ ymiþki
; where mi ¼ k1 þ?þ ki�1; 1pips:

Then vi is an orbit representative for Oi; v ¼ v1 þ?þ vs is an orbit representative
for the rank k orbit O; and the L-orbit of

v0 ¼ ðv1;y; vsÞ

is an open subset of O1 �?� Os with full measure. We denote by S0 and S the
isotropy subgroups of v0 and v; respectively. In the notation of Section 1.4, we have

v ¼ y1; and thus

S ¼ ðH1 � L0Þ � U :

It is easy to see that S0 can then be written as

S0 ¼ ðH 0
1 � L0Þ � U ;

where H 0
1 is a certain reductive subgroup of H1: We now change the notation slightly

and write G0 for H1 and H 0 for H 0
1:

Example. Take G ¼ E7ð7Þ; s ¼ 2 and k1 ¼ 1; k2 ¼ 2: Then k ¼ n ¼ 3 and S ¼ G0 (the

stabilizer of the identity element of n; the exceptional Jordan algebra of dimension
27). In this case we have G0 ¼ F4ð4Þ and S0 ¼ H 0 ¼ Spin4;5 (cf. [A, p. 119]).

In general, X ¼ G0=H 0 is a reductive homogeneous space, and we write IndG0

H 01

for the quasiregular representation of G0 on L2ðXÞ: We decompose this using
the Plancherel measure dr and the corresponding multiplicity function
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m : bHH-f0; 1; 2;y;Ng; i.e.,

IndG0

H 01C
Z "bG0G0

mðsÞs drðsÞ:

We define a map Y from irreducible unitary representations of G0 to unitary
representations of P as follows

YðsÞ ¼ IndP
SN ðEs#wvÞ;

where Es denotes the trivial extension of s to S ¼ ðG0 � L0Þ � U ; and wv is the unitary
character of N defined by

wvðexp xÞ ¼ e�i/v;xS:

An easy application of Mackey theory shows that all representations YðsÞ are
unitary irreducible representations of P; and YðsÞCYðs0Þ if and only if sCs0:

Proposition 3.3. The restriction of P to P decomposes as follows:

PjPC
Z "bG0G0

mðsÞYðsÞ drðsÞ; ð14Þ

Proof. This is proved as in [DS1, Lemma 2.1]—here is a sketch of the argument. We
define an operator F from the space of P to functions on P by the formula

½Ff �ðlnÞ ¼ wvðln l�1Þf ðl � v0Þ; lAL; nAN:

It is an easy exercise to verify that F gives a unitary isomorphism

PjPC IndP
S0Nð1#wvÞ:

Next, using induction by stages we obtain an isomorphism

IndP
S0N ð1#wvÞCIndP

SN ððIndS
S01Þ#wvÞ:

A final easy calculation shows that

IndS
S01CEðIndG0

H 01ÞC
Z "bG0G0

mðsÞðEsÞdrðsÞ:

Combining the various isomorphisms, we obtain the result. &

Let k be a unitary representation of G on a Hilbert space H; and R be a subgroup
of G: We shall write Aðk;RÞ for the von Neumann algebra generated by the
operators fkðgÞjgARg: If G is a type I group [M], then for irreducible k one
has Aðk;GÞ ¼ BðHÞ—the full algebra of bounded operators on H: To extend
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the P-decomposition of P from formula (12) to the G-decomposition, we require the
following

Proposition 3.4. AðP;GÞ ¼ AðP;PÞ:

The analog of Proposition 3.4 for Euclidean Jordan algebras was proved in [DS1,
4.4], by combining the low rank theory of [Li1,Li2] for classical groups and Jordan
algebra techniques for the exceptional groups. These arguments extend to the present
setting without any significant modifications. For the reader’s convenience, we
outline the steps of the argument in Appendix A.1.

Proof of Theorem 0.2. Consider the direct integral decomposition of P

P ¼
Z "

mðkÞk dZðkÞ

into irreducible representations of G: Then

AðP;PÞD
Z "

mðkÞAðk;PÞ dZðkÞD
Z "

mðkÞAðk;GÞ dZðkÞ ¼ AðP;GÞ:

The equality of Proposition 3.4 is possible only when the following conditions are
satisfied (for almost every k with respect to dZ):

* kjP is irreducible (then Aðk;PÞ ¼ Aðk;GÞÞ;
* If kjPCk0jP; then kCk0:

Thus in this case (almost) every irreducible representation YðsÞ from the spectrum
of PjP extends uniquely to an irreducible representation of G; which we denote by

yðsÞ; hence the P-decomposition of formula (14) gives rise to the G-decomposition

P ¼
Z "bG0G0

mðsÞyðsÞ drðsÞ

and the theorem follows. &

Example. Again, take G ¼ E7ð7Þ; s ¼ 2 and k1 ¼ 1; k2 ¼ 2: Then the map s/ yðsÞ
establishes a correspondence between the spectrum of P and the spectrum of the
rank 1 reductive symmetric space F4ð4Þ=Spinð4; 5Þ: In other words, we obtain a

duality between (some subsets of) the unitary duals of two exceptional groups: split
F4 on one side and split E7 on the other side. As with Howe’s duality correspondence
(the usual y-correspondence), we expect that this new duality will have smooth and
global analogues.
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Appendix A

A.1. Low rank representations

Let t be a unitary representation of G: Since N is abelian, the restriction tjN
decomposes into a direct integral of unitary characters of N: This decomposition
defines a projection valued measure on the dual space N�; which we identify with n:

If this measure is supported on a single non-open orbit OrCN; we say that t is a low-

rank representation of G and write

rankNt ¼ r:

An element x1 is a primitive idempotent in a Jordan algebra N; and we can
consider the associated Peirce decomposition

N ¼ Nðx1; 1Þ þ Nðx1;
1
2
Þ þ Nðx1; 0Þ:

Observe that the spaces Nðx1; 1Þ and Nðx1; 0Þ are the Jordan algebras of ranks 1 and
n � 1; respectively, for the Jordan structure inherited from N:

We will write N1 for Nðx1; 1Þ and N0 for Nðx1; 0Þ: Similarly, we write G0 for the
conformal group of N0; P0 ¼ L0N0 for the Siegel parabolic subgroup of G0; etc.
Below are the examples of N0 and G0 for several different groups G:

* For G ¼ Opþ2;pþ2; N0 ¼ R (rank 1 Jordan algebra), and G0 ¼ GL2ðRÞ:
* If G ¼ Spn;n; then G0 ¼ Spn�1;n�1:

* If G ¼ E7ð7Þ; then N0 ¼ R6;6 (rank 2 Jordan algebra), and G0 ¼ O6;6:
* If G ¼ E7ðCÞ; then G0 ¼ O12ðCÞ:

Set f ¼ "n
i¼2 ge1�ei""n

i¼2 ge1þei and n0 ¼ f þ n1: Then n0 is a two-step nilpotent

subalgebra of g with the center n1:
Any generic unitary irreducible representation of the group N 0 is determined by

the unitary character of its center N1: We denote by rt the unitary irreducible
representation of N 0 which restricts to the multiple of the character wt on N1;
tAN3

1 ¼ N�
1 \f0g:

Consider now a subgroup G0N 0 of G: We can view G0 as a subgroup of a
symplectic group Sp ðfÞ associated with the standard skew-symmetric bilinear form
on f: Hence we can use the oscillator representation of Sp ðfÞ to extend the
representation rt of N 0 to a representation of G0N 0 which we denote by errt:

Let s be a unitary representation of G; rankNs ¼ r; 0oron: Without loss of
generality, we may assume that s has no N1-fixed vectors. Then by Mackey theory,
we can write down the decomposition

sjG0N 0 ¼
Z "

N3
1

kt#errt dt;

where all kt are unitary representations of G0:
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Proceeding as in [DS1, 3.1], we verify that all of the representations kt are in turn
the low-rank representations of G0: More precisely, we have the following.

Lemma A.1. Let s be a low-rank representation of G; rankNs ¼ r; 0oron: Then for

any tAN3
1 the N0-spectrum of the representation kt is supported on a single L0-orbit,

and rankN0
kt ¼ r � 1:

The next technical lemma is proved exactly as in [DS1, 3.2]:

Lemma A.2. If for all tAN3
1 one has Aðkt;G0Þ ¼ Aðkt;P0Þ; then

A

Z "

N3
1

kt#errt dt;G0

 !
DA

Z "

N3
1

kt#errt dt;P0N 0

 !
:

Theorem A.3. Let s be a representation of G; rankNs ¼ r; 0oron: Then

Aðs;GÞ ¼ Aðs;PÞ:

Proof. The proof of the theorem is based on the fact that G0 and P generate G; so it
is enough to verify that Aðs;G0ÞDAðs;PÞ: Since P0N 0 is a subgroup of P; by the
Lemma above the assertion of the theorem is equivalent to the claim that for any
tAN3

1

Aðkt;G0Þ ¼ Aðkt;P0Þ:

By Lemma A.1, all kt have rank r � 1: Proceeding in the same manner, we reduce the
statement of the theorem to that about rank 0 representations of the certain
(classical) group G00: Since all rank 0 representations are the direct integrals of
characters, and any character of G00 is determined by its restriction to the Siegel
parabolic P00CG00; the theorem follows. &

We now consider the tensor product

P ¼ pO1#?#pOs ;

for k ¼ k1 þ k2 þ?þ kson: Then P is low-rank representation of G and
rankNP ¼ k: Applying the theorem above to P; we obtain the statement of
Proposition 3.4 for kon:

It remains to check Proposition 3.4 for k ¼ n: For all groups G except Opþ2;pþ2;

Opþ4ðCÞ and E7ð7Þ; E7ðCÞ the statement of the proposition follows from the results of

[Li2], since all the representations form the spectrum of P appear in the Howe

duality correspondence for appropriate stable range dual pairs ðG1;GÞ: For the
exceptional cases listed above, the argument can be constructed along the lines of
Section 4 of [DS1].
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A.2. Tables of groups and symmetric spaces

In the first table we list the symmetric spaces K=M and L=H; and the root
multiplicities d and e in SðtC; kCÞ: The rank of the Jordan algebra is n; except for
Opþ4ðCÞ; Opþ2;pþ2 (rank 2), and E7ð7Þ; E7ðCÞ (rank 3). The second table lists the

spaces X ¼ G0=H 0 in the y-correspondence of Theorem 0.2.

G K=M L=H d e

GL2nðRÞ O2n=ðOn � OnÞ GLnðRÞ � GLnðRÞ=GLnðRÞ 1 0
O2n;2n ðO2n � O2nÞ=O2n GL2nðRÞ=SpnðRÞ 2 0

E7ð7Þ SU8=Sp4 R� � E6ð6Þ=F4ð4Þ 4 0

Opþ2;pþ2 ½Opþ2�2=½O1 � O2
pþ1� R� � Opþ1;pþ1=Op;pþ1 p 0

SpnðCÞ Spn=Un GLnðCÞ=OnðCÞ 1 1
GL2nðCÞ U2n=ðUn � UnÞ GLnðCÞ � GLnðCÞ=GLnðCÞ 2 1
O4nðCÞ O4n=U2n GL2nðCÞ=SpnðCÞ 4 1
E7ðCÞ E7=ðE6 � U1Þ C� � E6ðCÞ=F4ðCÞ 8 1
Opþ4ðCÞ Opþ4=ðOpþ2 � U1Þ C� � Opþ2ðCÞ=Opþ1ðCÞ p 1

Spn;n ðSpn � SpnÞ=Spn GLnðHÞ=O�
n 2 2

GL2nðHÞ Sp2n=ðSpn � SpnÞ GLnðHÞ � GLnðHÞ=GLnðHÞ 4 3

G X

GL2nðRÞ GLkðRÞ=½GLk1
ðRÞ �?� GLks

ðRÞ�
O2n;2n SpkðRÞ=½Spk1

ðRÞ �?� Spks
ðRÞ�

E7ð7Þ Spin4;5=Spin4;4 ðk1 ¼ 1; k2 ¼ 1Þ
F4ð4Þ=Spin4;5 ðk1 ¼ 2; k2 ¼ 1Þ

Opþ2;pþ2 SOp;pþ1=SOp;p ðk1 ¼ 1; k2 ¼ 1Þ

SpnðCÞ OkðCÞ=½Ok1
ðCÞ �?� Oks

ðCÞ�
GL2nðCÞ GLkðCÞ=½GLk1

ðCÞ �?� GLks
ðCÞ�

O4nðCÞ SpkðCÞ=½Spk1
ðCÞ �?� Spks

ðCÞ�
E7ðCÞ Spin9ðCÞ=Spin8ðCÞ ðk1 ¼ 1; k2 ¼ 1Þ

F4ðCÞ=Spin9ðCÞ ðk1 ¼ 2; k2 ¼ 1Þ
Opþ4ðCÞ SOpþ1ðCÞ=SOpðCÞ ðk1 ¼ 1; k2 ¼ 1Þ

Spn;n O�
k=½O�

k1
�?� O�

ks
�

GL2nðHÞ GLkðHÞ=½GLk1
ðHÞ �?� GLks

ðHÞ�

ARTICLE IN PRESS
A. Dvorsky, S. Sahi / Journal of Functional Analysis 201 (2003) 430–456 455



References

[A] J.F. Adams, Lectures on Exceptional Lie Groups, University of Chicago Press, Chicago, 1996.

[BK] H. Braun, M., Koecher, Jordan-Algebren, Springer, Berlin, New York, 1966.

[DS1] A. Dvorsky, S. Sahi, Tensor products of singular representations and an extension of the

y-correspondence, Selecta Math. 4 (1998) 11–29.

[DS2] A. Dvorsky, S. Sahi, Explicit Hilbert spaces for certain unipotent representations II, Invent. Math.

138 (1999) 203–224.

[J] D.S. Jones, Generalised Functions, McGraw-Hill, New York, Toronto, 1966.

[KS] B. Kostant, S. Sahi, Jordan algebras and Capelli identities, Invent. Math. 112 (1993) 657–664.

[Li1] J.-S. Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989) 237–255.

[Li2] J.-S. Li, On the classification of irreducible low rank unitary representations of classical groups,

Compositio Math 71 (1989) 29–48.

[Lo] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Mathematical Lectures, University of

California, Irvine, 1977.

[M] G. Mackey, The Theory of Unitary Group Representations, University of Chicago Press,

Chicago, 1976.

[Op] E. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group,

Compositio Math. 85 (1993) 333–373.

[OS] T. Oshima, J. Sekiguchi, The restricted root system of a semisimple symmetric pair, in: Advanced

Studies in Pure Mathematics, Vol. 4, North-Holland, Amsterdam, 1984, pp. 433–497.

[P] D. Poguntke, Unitary representations of Lie groups and operators of finite rank, Ann. of Math.

(2) 140 (1994) 503–556.

[S1] S. Sahi, Explicit Hilbert spaces for certain unipotent representations, Invent. Math. 110 (1992)

409–418.

[S2] S. Sahi, Unitary representations on the Shilov boundary of a symmetric tube domain, Contemp.

Math. 145 (1993) 275–286.

[S3] S. Sahi, Jordan algebras and degenerate principal series, J. Reine Angew. Math. 462 (1995) 1–18.

[SS] S. Sahi, E. Stein, Analysis in matrix space and Speh’s representation, Invent. Math. 101 (1990)

379–393.

[Sc] H. Schlichtkrull, Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhäuser,
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