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ABSTRACT. — We study Kontsevich’s deformation quantization for the dual of a finite-dimensional real
Lie algebra (or superalgebrg) In this case the Kontsevichproduct defines a new convolution 6ffg),
regarded as the space of distributions supporte@l @tg. For p € S(g), we show that the convolution
operatorf — px f is a differential operator withnalyticgerm.

We use this fact to prove a conjecture of Kashiwara and Vergne on invariant distributions on a Lie
group G. This implies local solvability of bi-invariant differential operators on a Lie supergroup. In the
special case of Lie groups, we get a new proof Duflo’s theorem.
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RESUME. — Nous étudions la quantification par déformation de Kontsevich du dual d’'une algébre (ou
superalgebre) de Lie réelle de dimension finiBans ce cas, le-produit de Kontsevich définit une nouvelle
convolution surS(g), vu comme I'espace des distributions de support le gbiatg. Pourp € S(g), nous
démontrons que I'opérateur de convolutibrR— p x f est un opérateur différentiel de geramealytique

Nous utilisons ce fait pour prouver une conjecture de Kashiwara et Vergne sur les distributions invariantes
sur un groupe de Li&'. Ceci implique la résolubilité locale des opérateurs différentiels bi-invariants sur un
super-groupe de Li€". Dans le cas particulier des groups, nous obtenons ainsi une nouvelle démonstration
du théoréme de Duflo.

0 2002 Editions scientifiques et médicales Elsevier SAS

0. Introduction

In recent work [1], M. Kontsevich has established a remarkable result on the formality of
the Hochschild complex of a smooth manifold. An important consequence of this result is an
explicit construction of an associativeproduct on an arbitrary smooth Poisson manifotd ).

This x-product is given by a formal power series of bidifferential operators (depending on a
parameter).

For a general Poisson manifold this series does not converge, exceptfér. Thus the
analytic properties of the-product are somewhat obscure. However, as we shall show in this
paper, if X = g* is the dual of a finite-dimensional real Lie algehydor, in general, if the
coefficients of the Poisson brackeare linear), then the situation is much nicer.
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372 M. ANDLER, A. DVORSKY AND S. SAHI

In this case, we can sét= 1, and Kontsevich'sc-product descends to an actual product
on the algebra of polynomial functions qif, which can be naturally identified with the
symmetric algebr& = S(g). In this paper, we will identifyS(g) with the convolution algebra
of distributions ong supported ab. Then thex-product can be viewed as a new associative
convolution product of such distributions.

Let® be the algebra of germs @bf differential operators op with analytic coefficients. By
virtue of the pairing between functions and distributiafiss naturally aright ©-module and to
emphasize this fact we shall write the action on distributimmshe right Our first main result is
the following

THEOREM 0.1.— Givenp € S of order/, there is a unique elemenf; of order/ in © such
thatforallre S

rxp=1-0,.
Next, in [1, 8.3.3], Kontsevich introduces a certain formal power series

o0

1) Si(x) =exp < Z Cé? tr[(ad I)%]> ,

k=1
where the constanté? are expressed as integrals of smooth differential forms over certain
manifolds with corners (compactified configuration spaces, introduced in [12]).

PROPOSITION 0.2. —The power serie$ (z) converges to an analytic functiar{z) in some
neighborhood of in g.

Fora € g, define the adjoint vector fieladj, by the formula

adi, () (&) = 5 f(exp(~ta) -2)

=0
Let
I=8%={peS|p-adj,=0forallacg}

be the subalgebra of invariant distributions, andfebe the right ideal o® generated by the
germs of the differential operatosdj,,, a € g.
Our next result is the following

THEOREM 0.3. —For p € Z, the operator
Ty =0pT — 70y,

belongs tdxr.

Herepr € S andd;, is the corresponding differential operator defined in Theorem 0.1, and
forr e S,r- 0, =r x4 p (convolution of distributions og).

We now discuss some applications of these results to invariant distributions on Lie groups. Let
G be a finite-dimensional Lie group with Lie algelyaWe writel/ = U(g) for the enveloping
algebra ofg, and Z = U9 for the center of the enveloping algebra. We identifywith the
convolution algebra of distributions @ supported at € G.

Let U and S be the spaces of germs atand 0 of distributions onG and g, and letZ
andI be the subspaces gfinvariant germs. We denote bp, :S — U andexp*: U — S
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KONTSEVICH QUANTIZATION AND INVARIANT DISTRIBUTIONS ON LIE GROUPS 373

the pushforward and pullback of distributions (germs) under the exponential map; and define
1n:S — U by

) n(p) = exp.(pq),
where forz € g

ead(z)/2 _ o—ad(z)/2 1/2 oo Bo
:=det _ erlad2)2%7 ).
q(x) :=de < 2d() ) exp(k_lﬁk(%)! r[(ad ) })

Here B, are the Bernoulli numbers.
It follows from [1, Ch. 8], that the restriction ofto Z is analgebraisomorphism fron¥ to Z,
ie.,

Q) n(p1 *g p2) =n(p1) *a n(p2)

for pi,p2 € Z, where x5 and x; denote convolutions in the Lie algebra and Lie group
respectively. (This fact was first established by Duflo in [8—10] using Kirillov’s orbit method.
See also [6] for an overview of Duflo’s construction.)

From Theorems 0.1 and 0.3, we can deduce

THEOREM 0.4. —For p € 7, the following differential operatoD, : S — S lies infR:

P D, = exp*(n(P *q p) — n(P) x¢ n(p)).

This result was conjectured by M. Kashiwara and M. Vergne in [14], and proved by them
for g solvable. It has several important corollaries. First, since operators ftoamnihilate
distributions froml, we obtain the following extension of the isomorphism (2):

THEOREM 0.5. —Forp € 7 and P € I, we have)(P x4 p) = n(P) *q n(p).

Next, recall that a distributio) on G is called an eigendistribution if there is a character
x : Z — C such that

Q+cz=x(2)Q forallzinZ.
Eigendistributions on the Lie algebra are defined similarly, and we obtain the following

THEOREM 0.6. —The map) takes germs of invariant eigendistributions on the Lie algebra to
those on the Lie group.

As another consequence of Theorem 0.5, we obtain

THEOREM 0.7. —Every nonzero bi-invariant differential operator oi admits a(local)
fundamental solution.

Note that the analogous statement for left-invariant differential operatofs snknown to
be false. In fact, the first example of a not locally solvable partial differential operator [18] is a
left-invariant vector field on a three-dimensional Heisenberg group.

COROLLARY 0.8.—Every nonzero bi-invariant differential operator @nis locally solvable.

This last result was originally proved by Duflo in [10] (see also [13,20,11] for various special
cases). An interpretation of the statement of Theorem 0.7 in terms of Kirillov’s orbit method can
be found in [15, 6.1 and 8.2].
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374 M. ANDLER, A. DVORSKY AND S. SAHI

Most of our results extend to the case of finite-dimensional Lie superalgebras without much
additional effort. For simplicity of exposition, we work with ordinary Lie algebras and at the end
explain the modifications necessary for the super-setting.

The results of this paper were announced in [2].

Added in proof A recent e-print of B. Shoikhet [22] shows that the functiofx) is
identically 1. Incorporating this fact would somewhat simplify the presentation below, but will
not substantially change the arguments or yield a sharper result.

1. Relevant factsfrom [1]
1.1. Configuration spaces

Following Kontsevich, fo2n + m > 2, we define

Confn,m: {(pla-"apn;qlv"'vqrn) |p’L GH, Diy #piga qj ER, qj, #qj2}

HereH = {z € C: Imz > 0}.
Conf, ., is a smooth oriented manifold of dimensi2n + m, with a free action of the two-
dimensional grougg:! = {z — az +b|a >0, b € R}. The quotient space

Ch,m = Conf,, /G1

is a smooth oriented manifold of dimensidn + m — 2.
The space€onf, ,, andC, ,, havem! connected components, and we denot@bylfj{,m
andC,!,, the component where

q1 <q2<--<(gm-

Similarly, forn > 2, we define

Confy = {(p1,..-,pn) |pi €C, pi, #pi,} and
C,, = Conf, /G* ~whereG?>={z—az+b|a>0,beC}.

Clearly,dim C,, = 2n — 3.
Consider, for example, the space

Cao={(p1,p2) €H* |p1 #p2}/G".

For each point € C o we can choose a unique representative of the faym 1, 2) € Confa o.
ThusC, o is homeomorphic té{ \ {v/—1}.
Similarly, it is easy to see that
Cy~ S,
Cl,l ~ (07 1)1
0072 ~ {O, 1}

The space§’, ,,, have natural compactification_shm, such that the boundary components in

Chn.m \ Cn,m correspond to various degenerations of the configurations of points.
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KONTSEVICH QUANTIZATION AND INVARIANT DISTRIBUTIONS ON LIE GROUPS 375

Fig. 1.C2,0 (THE EYE).

For example,
62 = 027
61,1 = 0171 L Co,g = [O, 1]
Of particular interest is the space

Cao=Ca0U(CoalUCi1UC LCs),

which can be drawn asTHeE EYE”.

The circleC, represents two points coming close together in the interidf oand two arcs
C1,1 U Ch 4 represent the first point (or the second point) coming close to the real line. Finally,
the two cornerg’; » correspond to both points approaching the real line.

The compactificatiod”,, ,,, is described in general in [1, Ch. 5], and the boundary components
are products of various), ;'s andC),’s.

In particular, the boundary components of codimengianC,, ,,, are of the form

1. Cp x Cppy1m (k=2) 0r

2. Cry X Cppgm—ip1 (k=10rl>2).

The first case corresponds to a clustek @ioints in4 coming infinitely close to a point ifi,
and the second case corresponds to a clustepoints in4 and! points inR coming infinitely
close to a pointirR.

1.2. Graphsand weights

We consider the class of “admissible” oriented labeled grdphs (Vr, Er)} such that
e 1T consists of: vertices of the “first” type labelefll, . . ., n} andm vertices of the “second”
type labeled {,2,...,m}.
e For each vertex of the first type, there ark; edges inEr starting fromi, labeled
{e%,e?, .. .,efi .
e Er contains no edges starting from the vertices of second type, and no loops (edges of
type (v, v)) or multiple edges.
For each pointin(p1,...,pn;q1,--,qm) € Conf, ,, we can draw the graph in the closed
upper half-plané{ = H UR as follows:

verticesi are placed ap; € H, vertices;j are placed ay; € R, and edges are drawn as
Lobachevsky geodesics (semicircles centereipoonnecting the vertices.

For each edge € Er connecting the vertex af € H to z; € H, we definep, to be the angle
betweere and the vertical line through,. Then

_ 1 o (22 —21)(Z2—21)
B 2\/—_1L Sl —2)(E—21)

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE
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376 M. ANDLER, A. DVORSKY AND S. SAHI
Define a magbr from Conf, ,, to thek-dimensional toru*, wherek = i k; as follows
(5) (I)F(plv <o Pns gL, - 7qm) = (gbe%?gbe%v . '7¢€§Ln)'

Observe thafbr descends to a map frodi, ,, to T*. Definewr to be the pullback ta@’,, ,, of
the normalized volume form (total measueon T*. .
The formwr is a smoothk-form on C,, ,,,, which extends continuously @, ,,,. We define

theweight® wr by
wr = / wr.

6+

n,m

Evidently,wr = 0, unlessk = dim C,, ,,, =2n +m — 2.
1.3. Star-product

Let

V(f1, f2) = 2773 (f1)9;(f2)

1,5=1

be a smooth Poisson bracket (bivector field) @t (R¢). Kontsevich’s main result gives the
following construction of amssociative star-produan C> (R?)[[R]]:

(6) fixfa= Zhn B (f1 f2),

n=0

whereBy(f1, f2) = f1f2. B1(f1, f2) =~(f1, f2) and in general

(1) n(f1, f2) = Z wrBr(f1, f2).

reG,

HereG,, is defined as a class of admissible graphs witrertices of the first type, two vertices
of the second type ankl = 2, 1 < i < n. The weightwr is as in the previous subsection, and
Br is a bidifferential operator defined as follows:

Bl“(flaf2): Z [H( H 61(6))71(691(5%)]

I: Er—{1,2,...,d} Lk=1 “e€FEr,e=(x,k)
(8) X ( H (91(6)) fl X ( H a[(e)) f2_
e€Er,e=(*,1) e€Er,e=(*,2)

To obtain this operator, we relabel each vetex < k < n, by a component*i* of ~, relabel

T asf, and2 as f». We also label the edge, with i, and the edge? with j;,. Then an edge
leading to the vertex indicates differentiation of the function labeling the vertex with respect to
the index labeling the edge.

1 This weight differs fromwr on p. 6 of [1] by the factor o% and from the weight¥/r on p. 23 by a factor of

1
Tl knl”
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KONTSEVICH QUANTIZATION AND INVARIANT DISTRIBUTIONS ON LIE GROUPS 377

Below is an example of a graph froly € G2 with

el =(1,1), e2=(1,2), et=(21), e3=(2,2).

0% 171 Jj1 0 272
[ —_— [

or (relabeling) lu/ ljg.

f1 f2

—_—

/

The corresponding bidifferential operatBr, is given by

= <— o~
N <— o

9) Br,(f1, f2) = > Y105, (71292) 05, 0y (1) (f2)-

1<i1,J1,i2,J2<d
1.4. Tangent map

Lety = ZZFI 79; A 9; be a Poisson bivector field d& as before; following [1, Ch. 8],
we define the magy from C>(R?) to C>°(R%)[[h]] by

In(f)=Y ;7,1 > wrDr(f).
n=0

‘TeH,

Here H,, is the set of all admissible graphs with+ 1 vertices of first type and no vertices
of the second type such that =2, 1 <i < n, andk,; = 0. The differential operatoDr is
defined by labeling the vertex+ 1 with f, the remaining vertices by componentsoaind then
proceeding as in formula (8).

Let Z be the center of the Poisson algebfx® (R%), v), i.e.

I={feC>®(R%): ~(f,g)=0forallge C=(R?)}.
Then, as established in [1, Ch. 8],

(10) I7(f1) x I7(f2) = IT(f1f2)

for f1,fo €T.

Let us briefly explain the ideas underlying the above equality.

Kontsevich’s main result is a construction of dri°-quasiisomorphisni/ between the
differential graded Lie algebrag and D consisting of the skew polyvector fields and
polydifferential operators oiR?, respectively. The quasiisomorphigican be regarded as a
(geometric) map between formal manifoldg-(manifolds) associated t6 andD, respectively.

The skew bivector field~y can be regarded as a point distributing in the firstQ-manifold.
Then the tangent spaces’ag andi/ (%) are differential graded Lie algebrdS andD’, with
the same underlying Lie algebrasAsandD, but with modified differentials. The derivativig{
of U at iy induces a graded linear map betweéEhandD’, and I is precisely the restriction
of di/ to theO-vector fields (i.e., functions).

The equality (10) follows from compatibility afi/ with the natural cup product structures on
the (tangent) cohomology &f’ andD’, as established in [1, Theorem 8.2].
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378 M. ANDLER, A. DVORSKY AND S. SAHI

The argument proving [1, Theorem 8.2], which was merely outlined in [1], was communicated
to us by M. Kontsevich [16], and actually proves a slightly stronger result. Since we need
this stronger version, we shall reproduce Kontsevich’'s argument for the case of Lie algebras
in Section 3.

2. Star-product for Lie algebras

In the rest of the paper we restrict ourselves to the situation wheng* is the dual of a
finite dimensional Lie algebrg, and~ is the standard Poisson bracket gn In this case the
coefficients of a bivector field are linear functions op*. More precisely, let:;, x», ..., x4 be
some basis off viewed as coordinate functions @i, and Iet{cfj} be the corresponding set of
structure constants.

We normalizery, zo, . . ., zq Such that

(11) k| <2 foralli,jandk.

ij

Then

d
(i, 2] =) cFx
1yl — iUk

]
k=1
and

1

Y(f1, f2) = i

! 0 0f2
2

k )
B:Ui B:Uj

irjik

1 d
’YU = EZcﬁxk
k=1

The linearity of the coefficients ofy implies that the formula (7) for the bidifferential
operatorB,, can be rewritten as
Bn = Z U)FBF,

TreA,

whereA,, consists of those graphs @, for which there is at most one incoming edge at every
vertex of the first type. Indeed, If € G,, \ A4,,, the corresponding bidifferential operatBr ., is
automatically0.

Next, let f; and f, be two polynomials org* with deg(f1) = I3, deg(f2) = l2. Then we
remark that the graphs contributing to the star-product formulgferf; can have no more than
l1 + [ vertices of the first type. Indeed, for ahye A,, the corresponding bidifferential operator
Br ., contains exactl@n differentiations. Wher2n > n + [y + I3, Br is obviously0 (because
f1 can be differentiated at moét times, f2 at mostl, times and each of the coefficients of
corresponding to the remaining vertices at most once). Hence

litle 5oy
fixfa=> ) > wrBr(fi, f2).

n=0  TI€A,
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KONTSEVICH QUANTIZATION AND INVARIANT DISTRIBUTIONS ON LIE GROUPS 379

This sum is finite, and if we set = 1, we obtain a polynomial og* of degreel; + [s.
Therefore, Kontsevich's-product descends to attual producton the algebra of polynomial
functions ong*, which can be naturally identified with the symmetric algefra S(g).

Let25(g) and20(g*) be the Weyl algebras of polynomial coefficient differential operators on
andg* respectively. Both of these algebras are generatggicby™, and there is a unique anti-
isomorphism between them, which is the identity on the generators. Observeititatchanges
multiplication and differentiation operators.

We will now change our point of view and rega$das the algebra of distributions with point
support (al € g). ThenS is naturally aright modulefor the algebr&8(g) via ¢. As discussed
in the introduction, we shall write differential operators acting on distributions, on the right.

This approach leads to the following

LEMMA 2.1.— Letp € S be a homogeneous distribution of orderand letT" € A,,. Then
there is a differential operatod?. € 20(g) of order at most, with polynomial coefficients of
degree at most, such that for any- € S

Br(r,p) =r- 0%

Proof. —From the formula (8) foBr(r, p), it is clear thatBr (-, p) is a differential operator
from 23(g*). Since at most edges ofl’ can terminate at the vertéx(corresponding te), the
order of Br(+, p) is at mostn. Also, the degree of the coefficients of this differential operator is

n + [ — #edges terminating at vertices other tian

which is at most.
Now letd%. = «(Br(-,p)). Then the statement follows from the discussion above.

Remark— Lety,...,yq be the basis of* dual toz, ..., x4, viewed as coordinate functions
ong. Then, by the lemma above, fpthomogeneous of ordéywe can write

(12) 7’.81’3_1".<Z(Zc55y°‘>35>,
1B]=t
wherea and are multi-indices, and, as usual

a1, 02 Qg

Y =y"ys” Yy,
B B2 Ba
ag_(i) <i> ...<i> ,
, o 0y2 0y

|| = #edges terminating at

Moreover,

|6] =n + | — #edges teminating at other vertices.
Subtracting second equation from the first, obtain— |3| =n — .
We now proceed with the proof of Theorem 0.1.
LEMMA 2.2.—|A,| < (8¢)"nl.
Proof. —To describe any graph from,,, it suffices to provide the following data for each

vertexj, 1 <j<n:
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380 M. ANDLER, A. DVORSKY AND S. SAHI

e the source of an incoming edge, if any ¢hoices, counting the case when there is no
incoming edge);
e whether the vertex is connected to the vertexertex2, both or neither4 choices).
Hence we have at mogt choices for each of vertices of the first type. Taking into account
the possible labelings of the outgoing edges at each vertex, we get

|An| < 2" (4n)"

Now the statement follows from the inequalit§} < e™n!. O
LEMMA 2.3.—Letl € A,,. Thenjwr| < 4™.

Proof. —Recall that the weightr associated to the grafphe A,, is given by the formula

wr = / wr,

ct

n,2

wherewr is the pullback of the volume form from ti#-dimensional torug?" underd®r.

We consider the preimage of a generic paint T2" under®r. Using the action of3', we
can fixg; = 0 andg, = 1, and thus identifyC;, with 1"

Rewriting the formula (4) as

62\/—71(% (

(22 —21)(Za—21) = 29 —Z1)(Z2 — Z1),

we see that each edge gives rise to a pair of quadratic equations involving the coordinates of
its endpoints. Thus we obtain a system2af quadratic equations i2n real variables (the real
and imaginary parts gf;, po, . .., pn). Generically, this system has at ma@st = 4" (complex)
solutions.

Therefore, we conclude that

lwr| < 4™V,
whereV is the volume oﬂJF(C’;;Q) C T?". Obviously,V < 1 and the statement follows.O

Proof of Theorem 0.1. Without loss of generality, we may take
p=az'xs?...xy?, Wwitha +---+ag=1.
According to the formulas (6), (7) and Lemma 2.1,
o0 1 o0 »
(13) rkp=r- ) Zwrf)F .
n=0 TeA,
The expression above can be rewritten as
rxkp=r- ( Z (angyo‘)f)g).
BI<t ~

Setm =1+ |a| — |G]. It follows from the discussion after Lemma 2.1, that only the graphs
I" € A,, can contribute te, 3. Observe that all partial derivativesgf are at most in absolute
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KONTSEVICH QUANTIZATION AND INVARIANT DISTRIBUTIONS ON LIE GROUPS 381

value (this follows from the inequality (11)), and that any derivative &f a monomial with the
coefficient not exceeding, = a1!a2! . ..aq!. Therefore the absolute value of the coefficiegg
in (12) does not exceed,.
Using Lemma 2.3, we obtain
1 Am
— Z wpcaﬁ | |4mC

TeA,

lcapl =

Now by Lemma 2.2|4,,| < (8¢)™m!, hence
|capl < Cp(32e)™ < C)(32e)1°,

whereC), = (32¢)'C,.

Therefore, the seried .  c.py® converges absolutely in the polydisk of radilig(32e).
Hence in this neighborhood the formal series (13) defines a differential operator of the form
Z‘mgMﬁBﬁ, where Mg is the operator of multiplication by somanalytic function. The
statement follows. O

3. Tangent map for Lie algebras

We start by establishing Proposition 0.2.

Proof of Proposition 0.2. 4 suffices to show that the constani%c) from [1, 8.3.3] satisfy
estimates of the form

1
Cék) <t

for some constant
According to [1, 8.3.3.1], we have

(1) Wwh,
on

where “the wheel'Wh,, is the graph from¥,, shown in Fig. 2.
Arguing as in the proof of Lemma 2.3, we conclude tgf,, <4™, hencec(l) O

By [1, Th. 8.3.3], if r € S(g) is regarded as a function og*, then Ip(r) is given
by the application of the infinite differential operator associated to the séfi€s) from

Fig. 2. The wheeWh,,.
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382 M. ANDLER, A. DVORSKY AND S. SAHI

Fig. 3. Path inTHE EYE.

Proposition 0.2. Regardingas a distribution ory, we conclude that
Ir(r)=rt.

We can now proceed with the proof of Theorem 0.3.
Let I be a graph ind,, (Vv = {1,2,...,n,1,2}). For each configuration iit,, 12 (as
opposed t&,, » earlier), we can dra in H and calculate the edge angles. This gives a map

! A 2
O1:Crya,0 — T,

and we denote byy. the pullback of the volume form on the torus.
Next recall that's ( (the EYE) is the compactified configuration space of two points{iiVe
fix a path¢ : [0, 1] — Cs 0, such that

£(0) € Cy  (two points coinciding irfH),
£(1) e Cf,  (both points lying inR C H).

Now for eachn > 0 we have a “forgetting” maﬁ,ﬁg;o — Cq.,0, Wwhere we forget the location
of firstn points in the configuration. We denoteBy C C', 12 o the preimage of the pa#f{[0, 1])
under the forgetting map and I3y, its boundary.

The boundary,, can be written as the following cycle:

Oy =20~ 27} — Z,,

whereZ?, Z! are the preimages of the poigt®) and¢(1) respectively and,, is the sum (with
appropriate signs) of the components of

0C 420N preimage of £(t): 0 <t < 1}.

Sincewr. is a close®n-form, by Stokes’ theorem we get

(14) [t [ur= [t

Proof of Theorem 0.3. By [1, 8.2.1, 8.2.2], for, p € S we have

Z Zap(/ )] (r7) % (7).

(15)

=0 " T€A,

(16) lz Zap</ )]—(T*gp)T.

n=0 T€A,

Hence forT), as in the statement of Theorem 0.3, we get
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KONTSEVICH QUANTIZATION AND INVARIANT DISTRIBUTIONS ON LIE GROUPS 383

7Ty =(r*gp)T — (r7) * [Z ZBP<Z[ )]

= ‘TeA

We now discuss the structure df,. The relative positions of the verticdsand 2 are
determined by the poin§(t) € C2o. The mtegralfz wr. is the sum of integrals over the
top (i.e.,2n-dimensional) components df,,, which correspond to the following (degenerate)
configurations:

1. Two or more points cluster at

2. Two or more points cluster at

3. Two or more points cluster somewhere els&{in

4. One or more points cluster d

For components of type 41 = 0 (since the angle for any edge originating frdknis
identically 0). For components of types 1-3 which involve clusterthafe or morepoints,
Jwr=0by[1, Lemma 6.6].

Now let Z be a component corresponding to a two-point cluster of type 3. The corresponding
boundary component @mz,o is Cy x Cpt1,0 and we haveZ ~ Cy x Z, whereZ is the
preimage of the path in C,, 1 o under the forgetting map. As in [1, 6.4.JJ]Z wf. decomposes
as a product of integrals ovék andZ. The first integral vanishes unless two points in the cluster
are connected by an edge.

k K2
ce— | @ —> @ :;...
J

Relabeling the vertices and edges as above, we see that the opératarsum of terms with
factors of the form

d

o 1 1
DM G = 7 2l = o)
=1 =1

The set of graphs with the above subgraph can be grouped into sets of three corresponding
to a cyclic permutation of the three outgoing edges from the cluster. Each of these graphs has
the same Weighfz wr-. By the Jacobi identity, the sum of the three corresponding oper@fors
vanishes. Hencg .. , 9p([,wr) =0.

Now we consider two-point clusters of type 2.

i g
e— e —

(XS]

Relabeling the edges and vertices as above, we see that the corresponding operator is a sum of
terms with factors of the form
d
> -yl ),
j=1
where[z;, z;] € g acts as a differential operator. But this expression is equal talj,, (where
adj,, is the adjoint vector field corresponding i@ € g), which vanishes sincg is invariant

(pel.

This leaves only two-point clusters of type 1.

i J T
ce— | @ —e- -
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Arguing as above, we conclude thafl}, is a sum of terms containing factors of the typed,, .
HenceT), is an infinite sum of operators frofi. By Theorem 0.1 and Proposition 0.2

T, =0,7 — 70}

pT

belongs ta®. ThereforeT, € R, as was to be shown.O

Remarks— (a) In the above discussion we did not explicitly take into consideration the
possibility of edges originating outside the cluster and terminating at the vertices of the cluster.
However, we can group together graphs which differ only by a permutation of the incident
vertices in the cluster, and observe that these graphs have the same weight. The result now follows
from the Leibniz formula.

(b) The components odY,, have two natural orientations: the first arising from their
expression as products of configuration spaces and the second inherited froStrictly
speaking, one should check that these orientations are “compatible” in the sense that the formulas
(14)—(16) indeed hold as asserted.

The question of signs in formulas (15), (16) goes to the heart of the definition of the Kontsevich
star-product. These signs are not discussed in [1, 8.2.1, 8.2.2], but can be checked along the lines
of [3]. As for formula (14), clearly the sign of the componentsfis irrelevant. We need only
show that the terms on the left occur with opposite signs. Since these signs are “universal’, i.e.
independent of the Lie algebra, we consider the case of an abelian Lie ajg@tenr = 1 and
r+p=rx*gpforanyr,pin S(g). Hence the expressions (15), (16) can enter (14) with opposite
signs only.

4. Kashiwara-Vergne conjectureand local solvability

In this section we prove the Kashiwara—\Vergne conjecture (Theorem 0.4) and discuss its
conseguences.
We start by observing, that faf andz” in g, we have

[/, 2" =2 %2 — 2" x2'.
Then, by the universal property d# = U(g) it follows that there is a unique algebra
homomorphism betweeid and (S, x). This morphism (denotedl,;, in [1, 8.3.1]) is invertible,

and we shall denote its inverse by
Then, as established in [1, 8.3.4], we have

k(p7) = exp,(pg) =n(p) forpeS.

Proof of Theorem 0.4. ¥ view of Theorem 0.3, it suffices to establish the following identity
(in®)

D, = TpT_lq.

Since both sides are germs of analytic differential operators, it is enough to verify that
r-Dy=(r-T,)r'q
forallr € S.
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Then

7 Dy =exp” [1(r #q p) — 1(r) ¢ n(p)]
= (r*g p)g — exp™ (k(r7) *c K (p7))
= (7 *g p)g — €xp (/{(7’7’ *pT))
= (7 *g p)q — €xp ( ((TT*pT ))
= (r+*gp)q— (rr*p7)7"
[ T %g D)T — (TT*pT)} 14
=(r-Tp)m o
Theorems 0.5 and 0.6 follow immediately from the theorem above, and Theorem 0.7 requires
a short argument, which we give below.

Proof of Theorem 0.7. A bi-invariant differential operator o& is precisely an element of the
centerZ of U, hence of the fornm(p) for somep € Z. Let 6y andd; be the delta-distributions
supported ab € g and1 € G respectively. Then ip € 7\{0}, by [20] (see also [21]), there exists
a germP €I, such that

P *g P = (50.
Hence by Theorem 0.5, we get

n(P) xa n(p) =n(do) = d1,

and we see thaf(P) is a local fundamental solution for(p). O

5. Resultsfor Lie supergroups
5.1. Preliminarieson supermanifolds

We briefly discuss basic facts about supermanifolds. The study of supermanifolds etc. was
initiated by Berezin (see [4,19]) and independently by Kostant [17]. Subsequently a slightly
different (though essentially equivalent) treatment appeared in the physics literature [5]. We will
follow the approach of [17]. The reader familiar with the physics point of view should have no
trouble translating everything into that language.

A supermanifold Z.-graded manifold) of dimensiofily, d;) is a triple (X, A, 7), where X
is ady-dimensional smooth manifold is a sheaf ofZ,-graded commutative algebras ands
a sheaf map frord to the shea>°(X') of smooth functions otX. Moreover, we require that
every open subset of can be covered by A-splitting open set# of odd dimensioni;”. This
means that we can choose (non-canonical) subalgéhii@s and D(U) of A(U) such that

Tlcwy: C(U) — C*(U) is an algebra isomorphism,
D(U) is isomorphic to the exterior algebradh variables,
C(U)® D(U) ~ A(U) (algebra isomorphism).
A(X) and its dualA(X ) = Homgr(A(X),R) are super (i.e.Z2-graded) vector spaces.
A “pure” linear functionalk € A(X)' is called a differentiation at € X if

(v, f9) = (v, /)g(x) + (=1)" "D f(a)(v,g),
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for any puref andg in A(X). Here we writef for ( f) andp for the parity 0 or 1). An arbitrary
v e A(X) is called a differentiation if its homogeneous components are differentiations, and
we write T,,(X, .A) for the super vector space of all differentiationscatt is easy to see that
dim[7T, (X, A)]; = d;, i =0, 1. Moreover, we have a natural surjection: 7, (X, A) — T, (X)
(ordinary tangent space &f atz) with ker, = [T,,(X, A)];.

For eachk = 0,1,... the sheafDiff; A of differential operators of ordexK k on the
supermanifold X, .A4) is defined in [17, 2.10] as follows:

(Diffy A)(U) = A(U), regarded as left multiplication operators;
(Diff, A)(U) = {0 € End A(U): [0, f] € (Diff—1 A)(U) forall f € A(U)}.
Here the brackel, ] denotes the graded commutatofind A(U).

For 8 € (Diff, .A)(X) we can define itbody as the unique differential operatoron X
satisfying the conditions

~ —~—

8-1000()():6-1,4 and

[0,f] =0, ] forall fe A(X).

This allows us to introduce a locally convex topology.40X), as in [17, 2.9]. The space of
distributionsDist(X,.A4) can then be defined as the topological duald’). The support of a
function f € A(X) is simply the support ofr(f) € C°>°(X), and the support of a distribution
T € Dist(X,.A) is the smallest closed setipp 7" such thatl" vanishes on allf € A(X) with
supp f NsuppT = 0.

5.2. Preliminarieson Lie supergroups

Following [17, 2.11], we defined(X)* c A(X)" as the subset of those linear functionals
on A(X) whose kernel contains an ideal of finite codimension. It is easy to checld {3} is
a graded co-commutative coalgebra. We say that the superma(tifolt] =) is a Lie supergroup
(graded Lie group in [17]), ifA(G)* has the structure of a Hopf algebra extending the natural
coalgebra structure.

This implies thatG is a Lie group and that the super tangent spgeel. (G, A) at the identity
e € G has the structure of a Lie superalgebra, i.e.,

g=4go + 91,

wheregq is the Lie algebra ofs. Moreover, we have a representatiorof G on g;, whose
differential is the adjoint action gfy ong;. We have used the same letteto emphasize the fact
that the supergroup can be reconstructed from the representation. The Hopf algébtacan
be obtained as the smash product of the group algetrand the universal enveloping algebra
U(g), and thenA(G) can be recovered as in [17, 3.7].

The action of a Lie supergroufg-,.A) on a supermanifold is defined in [17, 3.9]. Each Lie
supergroug GG, .A) has an “adjoint action” on itself and on its Lie superalgepfaegarded as
a supermanifold). Thus for eache g we obtain derivations of the algebra§G) and.A(g),
which will both be denoted bydj,, .

As before, we regard the (graded) symmetric algebraS(g) as the convolution algebra of
distributions on the super vector spareith support ab € g and denote by the subalgebra of
adj-invariant distributions.

We regard the universal enveloping algelifa= U/(g) as the convolution algebra of
distributions on the Lie supergroug-, A, 7) with support ate € G. The centerZ of U/ can
then be regarded as the subalgebradjfinvariant distributions.
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The spaces of gernt$, I, U, Z (see Introduction) can be defined analogously in the super-
setting.

The exponential map frong to (G, .A) is best described in terms of the corresponding
“pushforward” map

exp, - A(g)" — A(G)*

which is the usual exponential frofRg to the group algebrRG, and the symmetrization map
fromS toU.

Atthe germ levekxp, is anisomorphism fror8 to U (andI to Z). Hence it has a well-defined
inverseexp*.

As in the Introduction, we denote I8 the algebra of germs &tof differential operators op
with analytic coefficients, and B} the right ideal of© generated by the germs of the differential
operatorsadj,, a € g.

5.3. Statementsand proofsfor Lie supergroups

All results stated in Sections 0—4 hold with minor changes in the statements and proofs. We
discuss the less obvious modifications below.

Let g be a finite-dimensional real Lie superalgebra. Then its gtiad Homg(g,R) = g§ + g7
is a Poisson supermanifold (cf. [17, 5.2]). The Poisson bracketefined as the unique
biderivation of A(g*) satisfying

(Frs fo) = 0 if fi or fy is constant,
W J2)= sl fo] i fi,fa€q.
For convenience we fix bases,zs,...,z4, Of go and xq,+1,...,%d,+4, Of g1. Then in
coordinates we have
1 0f10f2
Y(f1,fo) =5 ) i zjl i =5
2 Z J (91'1 B:Uj

For an odd variable; the vector fielda% is odd; nevertheless,is anevenbidifferential operator
and preserves the grading giig™).
Following [1], we can define the-product of f1, f2 € A(g*) by the formula

o0

fixfo= Z% > wrBr(fi, fa).

n=0 ' TeqG,

The bidifferential operator8r for I' € GG,, are given by the formula (8) up to a sign which can
be calculated in the following way (illustrated by the example below).
We consider the same graph € G, as in Section 1.2, i.e.

S . S
e — 0

or (relabeling) l“l/ ijz.

f1 f2

-

/

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE

= <— o~
N <— ON



388 M. ANDLER, A. DVORSKY AND S. SAHI

We first form the expression

(17) Z (all /Yiljl ajl) (aiz/yizjz ajz)fl f27

1<i1,J1,42,52<d

where the bivector field§y) corresponding to the verticésand2 are all written on the left (since

~ is even, the order is irrelevant). Then we use the Koszul rule of signs to move the derivatives
to the appropriate positions (as given by the graph)di.eandd;, should be moved to the left

of f1,9;, to f> andd;, to~y*272. We obtain the bidifferential operator, as in the formula (9) before

(18) Z :t/yilj] ajl (,yizjz)ai] 8 (fl) J2 (f2)

1<i1,J1,%2,52<d

Here the signs of the summands are giveniyto the power

p(j2)p(f1) + p(iz) (p(iz) + p(j2)) + p(i1) (p(ir) + pliz) + p(j2)),

wherep(i) is the parity ofz; € g andp(f) is the parity of thef € A(g*). Note that in the above
formula (18) we did not mové;, pasto;,, thus preserving the same order as in (17).

It is easy to check that Kontsevich's argument for the associativity oktheduct remains
valid for A(g*).

Proceeding as in Section 2, we obtain

THEOREM 5.1. —Givenp € S of orderl, there is a unique elemen¥; of order!/ in ® such
thatforallre S

r*p:r-(?;.

The analyticity of the coefficients df; is verified exactly as before.
Let us writestr for the supertrace of an endomorphism of a graded vector space [19]. The

expressiontr|(ad z)2*] defines an even element iy(g). With 0(1) as in (1), we can verify (as
in Section 3) that

—exp(Zc str[(ad z)? ])

converges to an even superfunctidix) in .A(g) which is analytic ab € g.
Proceeding as in Section 3, we obtain

THEOREM 5.2. —For p € I, the operator
Ty =0, — 70y,

belongs tax.

Just as forr(z), the expression

so-on(3: o2

5tr (adz)? })

defines an element id(g), which is analytic ory.
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The mapn: S — U is defined (as before) by

n(p) = exp,(pq),

and the restriction ofy to 7 is analgebraisomorphism froni to Z (this extension of Duflo’s
isomorphism to the case of Lie superalgebras is due to Kontsevich).

Theorems 0.4, 0.5 and 0.6 for any real Lie superalggimaw follow from Theorem 5.2, as in
Section 4.

The statement of Theorem 0.7 should be modified in the following manner:

THEOREM 5.3. —Any bi-invariant differential operator on a real Lie supergrogf) with a
nonzero body, admits @cal) fundamental solution and hence is locally solvable.

Proof. —If a bi-invariant differential operator on a real Lie supergr@upas a nonzero body,
it can be represented a$p), wherep € 7 andp has a nonzero body. Then we can find a germ
P €1, such that

P*gp:(SQ.

Local solvability ofry(p) now follows as in the proof of Theorem 0.70
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