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A NEW FORMULA FOR WEIGHT MULTIPLICITIES
AND CHARACTERS

SIDDHARTHA SAHI

1. Introduction. The weight multiplicities of a representation of a simple Lie
algebrag are the dimensions of eigenspaces with respect to a Cartan subalgebrah. In
this paper, we give a new formula for these multiplicities.
Our formula expresses the multiplicities as sums of positive rational numbers. Thus

it is very different from the classical formulas of Freudenthal [F] and Kostant [Ks],
which express them as sums of positive and negative integers. It is also quite different
from recent formulas due to Lusztig [L1] and Littelmann [Li].
For example, for the multiplicity of the next-to-highest weight in then-dimensional

representation ofsl2, we get the following expression (which sums to 1):

1

(1)(2)
+ 1

(2)(3)
+·· ·+ 1

(n−1)(n) + 1

n
.

The key role in our formula is played by thedual affine Weyl group.
Let V0, ( , ) be the real Euclidean space spanned by the root systemR0 of g, and

let V be the space of affine linear functions onV0. We identifyV with Rδ⊕V0 via
the pairing(rδ+x,y) = r+(x,y) for r ∈R, x, y ∈ V0.

The dual affine root system isR = {mδ +α∨ | m ∈ Z, α ∈ R0} ⊆ V , whereα∨
means 2α/(α,α) as usual. Fix a positive subsystemR+

0 ⊆ R0 with base{α1, . . . ,αn},
and letβ be the highestshort root. Then a base forR is given bya0 = δ − β∨,
a1 = α∨

1 , . . . ,an = α∨
n , and we writesi for the (affine) reflection about the hyperplane

{x | (ai,x) = 0} ⊆ V0.
The dual affine Weyl group is the Coxeter groupW generated bys0, . . . , sn, and the

finite Weyl group is the subgroupW0 generated bys1, . . . , sn. Forw ∈ W , its length
is the length of a reduced (i.e., shortest) expression ofw in terms of thesi . The group
W acts on the weight latticeP of g, and each orbit contains a unique (minuscule)
weight from the set

� := {
λ ∈ P | (

α∨,λ
) = 0 or 1,∀α ∈ R+

0

}
.

Definition. For eachλ in P , we define
(1) λ̃ := λ+ (1/2)

∑
α∈R+

0
ε(α∨,λ)α, where, fort ∈ R, εt is 1 if t > 0 and−1 if

t ≤ 0;
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(2) wλ := unique shortest element inW such thatλ := wλ ·λ ∈ �.
We fix a reduced expressionsi1 · · ·sim for wλ, and, for eachJ ⊆ {1, . . . ,m}, we

define
(3) wJ := the element ofW obtained bydeletingsij , j ∈ J , from the product

si1 · · ·sim ;
(4) cJ := ∏

j∈J cj , wherecj := (aij , λ̃(j))
−1 andλ(j) := sij−1 · · ·si1 ·λ.

Let P+ ⊂ P be the cone of dominant weights; and, forλ ∈ P+, let Vλ be the
irreducible representation ofg with highest weightλ.

Theorem 1.1. For λ in P+ andµ in P , the multiplicitymλ(µ) ofµ in Vλ is given
bymλ(µ) := (|W0 ·λ|/|W0 ·µ|)∑J cJ , where the summation is over allJ such that
w−1

J ·λ is inW0 ·µ.
(We prove in Corollary 6.2 that thecJ ’s are positive.)
Forµ in P , let eµ denote the functionx �→ e(µ,x) onV0. ThenW acts on theeµ’s

by virtue of its action onP , that is,sieµ = esi ·µ, and Theorem 1.1 is equivalent to
the following formula for the characterχλ := ∑

µmλ(µ)e
µ of Vλ.

Theorem 1.2. We haveχλ = (|W0 ·λ|/|W0|)∑w∈W0
w(sim +cm) · · ·(si1+c1)e

λ.

We obtain Theorem 1.2 as a consequence of a more general result, namely, an
analogous formula for the generalized Jacobi polynomialPλ of Heckman and Opdam.
For the definition and properties ofPλ, we refer the reader to [HSc] and [O]. We recall
here thatPλ depends on certain parameterskα, α ∈ R0, such thatkw·α = kα for all
w ∈ W0. For special values ofkα, Pλ can be interpreted as a spherical function on a
compact symmetric space. In particular, in the limit as allkα → 1, we havePλ → χλ.

Definition. In the context of the previous definition, forλ in P , we redefine
(1′) λ̃ := λ+(1/2)

∑
α∈R+

0
kαε(α∨,λ)α;

(4′) cj = kij (aij , λ̃(j))
−1, wherek0 = kβ andki = kαi for i ≥ 1.

Theorem 1.3. For λ in P+ and forcj as above, the Heckman-Opdam polynomial
Pλ is given by the same formula as in Theorem 1.2.

Forλ in P+, definecλ := (|W0|/|W0 ·λ|)∏j (aij , λ̃(j)), and let� := Z+[kα] be the
set of polynomials in the parameterskα with nonnegative integral coefficients. Then
we prove the following theorem.

Theorem 1.4. We have thatcλ is in�, as are all coefficients ofcλPλ.

Theorem 1.4 is a generalization of the main result of [KS] to arbitrary root sys-
tems. Our proof depends on three fundamental ideas in the “new” theory of special
functions.
The first idea, due to Macdonald, Heckman, Opdam, and others, is that one can

treat root multiplicities on a symmetric space as parameters.
The second idea, due to Dunkl and Cherednik, is that radial parts of invariant
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differential operators on symmetric spaces can be written as polynomials in certain
commuting first-order differential-reflection operators, namely, the Cherednik opera-
tors.
The third idea is the method of intertwiners for Cherednik operators. This was

developed in [KS], [K], [S1], and [C2], and it can be regarded as the double affine
analog of Lusztig’s fundamental relation [L2] in the affine Hecke algebra.
Using the intertwiners of [C2] and [S2], our results can be extended to the context

of Macdonald polynomials and to the 6-parameter Koornwinder polynomials. These
intertwiners correspond to the affine Weyl group (rather than the dual affine Weyl
group) and hence arenot appropriate for the present context. We shall discuss them
elsewhere in [S3].

2. Preliminaries. The results of this section are due to Cherednik [C1], Heckman,
and Opdam [O].
Let F=R(kα) be the field of rational functions in the parameterskα, and let� be

theF-span of{eλ | λ ∈ P } regarded as aW -module.
Definition. For y ∈ V0, the Cherednik operatorDy is defined by

Dy = ∂y +
∑
α∈R+

0

(y,α)kα
1

1−e−α
(1−sα)−(y,ρ), whereρ := 1

2

∑
α∈R+

0

kαα.

Here are some basic facts about Cherednik operators from [O, Section 2].

Proposition 2.1. We have the following.
(1) The operatorsDy act on� and commute pairwise.
(2) For i = 1, . . . ,n, we havesiDy −Dsiysi = −ki(y,αi).
(3) There is a basis{Eλ | λ ∈ P } of�, characterized uniquely as follows:

(a) the coefficient ofeλ in Eλ is 1;
(b) DyEλ = (y, λ̃)Eλ, wherẽλ is as in Definition (1’) of the introduction.

(4) For λ in P+, the Heckman-Opdam polynomialPλ equals (|W0 · λ|/|W0|)∑
w∈W0

wEλ.

(5) For i = 1, . . . ,n, if si ·λ �= λ, thens̃i ·λ = si · λ̃.

3. The affine reflection. In this section, we prove some basic properties of the
affine reflections0.

Lemma 3.1. If α is a positive root different fromβ, then(α∨,β) equals zero or1.

Proof. Sinceβ is in P+, (α∨,β) is a nonnegative integer. Also, sinceβ is a short
root, we have(α,α) ≥ (β,β). So, by the Cauchy-Schwartz inequality, we get

(
α∨,β

) = 2
(α,β)

(α,α)
≤ 2 (α,β)

(α,α)1/2(β,β)1/2
≤ 2.
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If α �= β, thenα is not proportional toβ and the last inequality is strict.

For i = 0,1,2, defineRi
0 = {α ∈ R+

0 | (α∨,β) = i}, and, forα in R+
0 , put

α′ =
{
sβ ·α if α ∈ R00,

−sβ ·α if α ∈ R10∪R20.

Lemma 3.2. The involutionα �→ α′ acts trivially onR00 andR20, and permutesR10.

Proof. For α in R10, we have(α
′∨,β) = (α∨,−sβ · β) = (α∨,β) = 1, which

implies thatα′ is a (positive) root inR10. The assertions aboutR
0
0 andR

2
0 = {β} are

obvious.

Lemma 3.3. For λ in P , if s0 ·λ �= λ, thens̃0 ·λ = s0 · λ̃.
Proof. We computes0 · λ̃ = β+sβλ̃ using Lemma 3.2 andkα = kα′ . This gives

s0 · λ̃ = β+sβ ·λ+ 1

2

∑
α∈R00

kαε(α∨,λ)α− 1

2

∑
α∈R10∪R20

kαε(α′∨,λ)α.

Comparing this to the expression for̃µ with µ = s0 ·λ, it suffices to show that

ε(α∨,µ) =
{
ε(α∨,λ) if α ∈ R00,

−ε
(α

′∨,λ) if α ∈ R10∪R20.

Forα in R00, we easily compute that(α
∨,µ) = (α∨,λ).

For α in R10, we get(α
∨,µ) = (α∨,β + sβ ·λ) = 1− (α

′∨,λ). Being an integer,
(α

′∨,λ) is either less than or equal to zero or greater than or equal to 1. In either case,
we getε(α∨,µ) = −ε

(α
′∨,λ).

Finally, for α in R20, we haveα = α′ = β and(β∨,µ) = 2−(β∨,λ). Now s0λ �= λ

implies that(β∨,λ) �= 1; thus we have either(β∨,λ) ≥ 2 or (β∨,λ) ≤ 0. In either
case, we getε(β∨,λ) = ε(β∨,λ) = −ε(β∨,µ).

4. The intertwining relation. Dualizing the actiony �→ w · y of W on V0, we
get a representationv �→ wv of W on V satisfying(wv,y) = (v,w−1 ·y). For y in
V0 andw in W0, we havewy = w ·y. The affine reflections0 acts onV by

s0(rδ+y) = (y,β)δ+rδ+sβy.

For v = rδ + y in V , we define theaffineCherednik operator simply by putting
Dv = Dy+rI , whereI is the identity operator. From Proposition 2.1(2), we know the
intertwining relations between the (affine) Cherednik operators ands1, . . . , sn. In this
section, we prove the following intertwining relation between these operators ands0.

Proposition 4.1. For v = rδ+y in V , we haveDvs0−s0Ds0v = kβ(y,β).
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Proof. Let us writeNα for 1/(1−e−α)(1−sα), so that

Dv = ∂y +
∑

kα(y,α)Nα −(y,ρ)+r.

SincesβNα = Nsβ ·αsβ andsβ∂y = ∂sβysβ , we get

sβDvsβ = ∂sβy +
∑
α∈R+

0

kα(y,α)Nsβ ·α −(y,ρ)+r.

Now, partitioningR+
0 = R00∪R10∪R20 and using Lemma 3.2, we get

sβDvsβ = ∂sβy +
∑
α∈R00

kα
(
sβy,α

)
Nα −

∑
α∈R10∪R20

kα
(
sβy,α

)
N−α −(y,ρ)+r.

The following identities are easy to check:
(1) eβ∂sβye

−β = ∂sβy +(y,β);
(2) eβNαe

−β = Nα for α ∈ R00;
(3) eβN−αe

−β = 1−Nα for α ∈ R10;
(4) eβN−βe

−β = 1−Nβ +s0.
Using these, we get the following formula fors0Dvs0 = eβ(sβDvsβ)e

−β :

∂sβy +(y,β)+
∑
α∈R+

0

kα
(
sβy,α

)
Nα −

∑
α∈R10∪R20

kα
(
sβy,α

)−kβ
(
sβy,β

)
s0−(y,ρ)+r.

Since
∑

α∈R10∪R20
kα(sβy,α) = (sβy,ρ−sβ ·ρ) = (sβy,ρ)−(y,ρ), we get

s0Dvs0 = Dsβy +(y,β)−kβ(sβy,β)s0+r = Ds0v +kβ(y,β)s0.

The result follows.

5. The Heckman-Opdam polynomials. Let Eλ be as in Proposition 2.1.

Proposition 5.1. The polynomialsEλ satisfy the following recursions:
(1) Eλ = eλ for λ ∈ �;
(2) if si ·λ �= λ, then(si +(ki/(ai, λ̃)))Eλ is a multiple ofEsi ·λ.

Proof. For (1), we check simply thatDye
λ = (y, λ̃)eλ, using the identity

Nαe
λ =

{
eλ if

(
α∨,λ

) = 1,

0 if
(
α∨,λ

) = 0.

For (2), we writeF for (si + (ki/(ai, λ̃)))Eλ and first consideri �= 0. Then, fory
in V0, using Proposition 2.1(2), we get

DyF=
(
siDsiy −ki(y,αi)+ ki(

ai, λ̃
)Dy

)
Eλ=

((
siy, λ̃

)
si +ki

(
y, λ̃

)(
ai, λ̃

) −ki(y,αi)

)
Eλ.
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Since(y, λ̃)−(y,αi)(ai, λ̃) = (siy, λ̃), using Proposition 2.1(5), we get

DyF = (
siy, λ̃

)
F = (

y,si · λ̃
)
F = (

y, s̃i ·λ
)
F.

This proves (2) fori �= 0. Fori = 0, we use Proposition 4.1 to get

DyF=
(
s0Ds0y +kβ(y,β)+ kβ(

a0, λ̃
)Dy

)
Eλ=

((
s0y, λ̃

)
s0+kβ

(
y, λ̃

)(
a0, λ̃

) +kβ(y,β)

)
Eλ.

This time, using(y, λ̃)+(a0, λ̃)(y,β) = (s0y, λ̃) and Lemma 3.3, we get

DyF = (
s0y, λ̃

)
F = (

y,s0 · λ̃
)
F = (

y, s̃0 ·λ
)
F.

This completes the proof of (2) fori = 0.

Corollary 5.2. For λ in P , andci as in Definition (4′) of the introduction, we
have

Eλ = (
sim +cm

) · · ·(si1+c1
)
eλ.

Proof. By theminimality ofwλ, if w is apropersubexpression ofw
−1
λ = sim · · ·si1,

thenw ·λ �= λ. This means that the coefficient ofeλ in (sim +cm) · · ·(si1+c1)e
λ is 1.

The result now follows from Proposition 5.1.

Proof of Theorem 1.3.This follows from Corollary 5.2 and Proposition 2.1(4).

6. Positivity. Let �1 ⊂ � be the set of polynomials of degree less than or equal
to 1, with nonnegative integral coefficients and apositiveconstant term. Forλ in P ,
let aij andλ̃(j) be as in Definition(4

′) of the introduction.

Proposition 6.1. For eachj = 1, . . . ,m, (aij , λ̃(j)) belongs to�1.

Proof. Fix j and writeµ = λ(j), i = ij , andw = si1 · · ·sij−1. We need to show
that(ai, µ̃) has a positive constant term and nonnegative integral coefficients.
The lengths ofw andwsi must bej −1 andj , respectively, since otherwise we

could shorten the expressionsi1 · · ·sim for wλ. By a standard argument (see [Hu,
Chapter 5]), this implies thatw(ai) is a positive (affine) coroot inR+. Sinceλ = µ

is minuscule, we conclude that

0≤ (
w(ai),µ

) = (
ai,w

−1 ·µ) = (ai,µ).

If (ai,µ) were zero, thenλ(j+1) = si · µ = µ = λ(j) and we could shorten the
expression forwλ by droppingsij . This shows that(ai,µ), which is the constant term
of (ai, µ̃), is positive.
If i = 0, the nonconstant part of(a0, µ̃) is

−1
2

∑
α∈R+

0

kαε(α∨,µ)
(
β∨,α

)
,
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and we consider separately the contributions ofR00,R
1
0, andR

2
0.

Forα in R00, the contribution is zero.
Forα = β in R20, we get the term−ε(β∨,µ)kβ . By the first part,(a0,µ) is a positive

integer. Hence(β∨,µ) = 1−(a0,µ) ≤ 0, which implies that−ε(β∨,µ) = 1.
The roots inR10 can be grouped in pairs{α,−sβ ·α}, and the contribution of such

a pair is

−kα
ε(α∨,µ)+ε(−sβα∨,µ)

2

(
β∨,α

)
.

Now (β∨,α) is positive, so the coefficient above is a nonnegative integer, unless
(α∨,µ) and(−sβα

∨,µ) are both greater than zero. But in this case, we would get

0<
(
α∨,µ

)−(
sβα

∨,µ
) = (

α∨,µ−sβ ·µ) = (
β∨,µ

)(
α∨,β

) ≤ 0,

which is a contradiction.
The argument is similar ifi > 0. The nonconstant part of(ai, µ̃) is

1

2

∑
α∈R+

0

kαε(α∨,µ)(ai,α).

To compute this, we divideR+
0 into three disjoint sets consisting of{αi}, {the roots

orthogonal toαi}, and{the remaining positive roots}. Forα = αi , we get the coefficient
ε(ai ,µ), which is 1 since(ai,µ) > 0 by the first part. Ifα is orthogonal toαi , then
the coefficient is zero. Finally, the remaining positive roots can be grouped into pairs
{α,si ·α}, where we may assume that(α∨,αi) > 0. The contribution of each such
pair is

kα
ε(α∨,µ)−ε(siα∨,µ)

2
(ai,α).

Now (α∨,αi) > 0 implies (ai,α) > 0. Therefore, this coefficient is a nonnegative
integer, unless(α∨,µ) ≤ 0 and(siα∨,µ) > 0. But if this were the case, then we
would have

0>
(
α∨,µ

)−(
siα

∨,µ
) = (

α∨,µ−si ·µ
) = (ai,µ)

(
α∨,αi

)
> 0,

which is a contradiction.

Proof of Theorem 1.4.This follows from Theorem 1.3 and Proposition 6.1.

Setting all thekα ’s equal to 1 in Proposition 6.1, we deduce the following corollary.

Corollary 6.2. The constantscj andcJ in Theorems 1.1 and 1.2 are positive.
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