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A NEW FORMULA FOR WEIGHT MULTIPLICITIES
AND CHARACTERS

SIDDHARTHA SAHI

1. Introduction. The weight multiplicities of a representation of a simple Lie
algebrag are the dimensions of eigenspaces with respect to a Cartan subajgbbra
this paper, we give a new formula for these multiplicities.

Our formula expresses the multiplicities as sums of positive rational numbers. Thus
it is very different from the classical formulas of Freudenthal [F] and Kostant [Ks],
which express them as sums of positive and negative integers. It is also quite different
from recent formulas due to Lusztig [L1] and Littelmann [Li].

For example, for the multiplicity of the next-to-highest weight in thdimensional
representation ofl;, we get the following expression (which sums to 1):
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D2 @3 (=10 " n’

The key role in our formula is played by tlgeial affine Weyl group.

Let Vo, (, ) be the real Euclidean space spanned by the root syRteofi g, and
let V be the space of affine linear functions &g We identify V with Rs & Vg via
the pairing(ré +x,y) =r+(x,y) forr e R, x, y € V.

The dual affine root system B = {m§+a” | m € Z, o € Ro} C V, wherea"
means 2/(a, ) as usual. Fix a positive subsysteRgL C R with base{as, ..., o},
and letB be the highesshort root. Then a base foR is given byag = § — BV,
ai=ay,...,a, =, , and we writes; for the (affine) reflection about the hyperplane
{x | (@i, x) =0} < Vo.

The dual affine Weyl group is the Coxeter grodipgenerated byo, ..., s,, and the
finite Weyl group is the subgrou@, generated bys, ..., s,. Forw € W, its length
is the length of a reduced (i.e., shortest) expressian wfterms of thes;. The group
W acts on the weight lattic® of g, and each orbit contains a unique (minuscule)
weight from the set

O0:={reP|(aV,r)=00r1Va R}

Defl[wition. For eachh in P, we define

Q) r:=x1+(1/2) ZaeRg e@v,na, Where, forr e R, & is 1if r > 0 and—1 if
t <0;
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(2) wy, := unique shortest element i such that. := w; - A € 0.

We fix a reduced expression, ---s;, for wy, and, for each/  {1,...,m}, we
define

(3) wy := the element ofW obtained bydeletings;;, j € J, from the product

Sip o Sipy, ; _ _

(4) cyj = HjeJ Cj, WherECj = (aij,k(j))_l andk(j) = Sij_q 'Sil')\-

Let Pt C P be the cone of dominant weights; and, fore P, let V, be the
irreducible representation gfwith highest weight..

TueoreM 1.1 For A in PT andpu in P, the multiplicitym; (1) of i in V; is given
by m () := (|Wo-A|/IWo-il) Y, cs, where the summation is over allsuch that
w]l-x isin Wp- u.

(We prove in Corollary 6.2 that the;’s are positive.)

Forp in P, letet denote the functiow — e“*) on Vo. ThenW acts on the'*'s
by virtue of its action onP, that is,s;e* = ¢%*, and Theorem 1.1 is equivalent to
the following formula for the charactey;, := Zﬂ m; (et of Vy.

THEOREM 1.2 We havexs, = (|Wo- Al/IWol) X ey W(siy, +Cm) -+~ (siy +c1)e?.

We obtain Theorem 1.2 as a consequence of a more general result, namely, an
analogous formula for the generalized Jacobi polynomjalf Heckman and Opdam.
For the definition and properties &5, we refer the reader to [HSc] and [O]. We recall
here thatP, depends on certain parameteéss o € Ro, such that,,., = k, for all
w € Wy. For special values df,, P, can be interpreted as a spherical function on a
compact symmetric space. In particular, in the limit agaH> 1, we haveP, — ;.

Defirlition. In the context of the previous definition, farin P, we redefine
(1/) A=A+ (1/2) ZaeRsr ka(S‘(av’)L)()l;
@) ¢j =ki;(ai;, ;) "%, whereko = kg andk; = kg, for i > 1.

TueoreM 1.3 For A in PT and forc; as above, the Heckman-Opdam polynomial
P, is given by the same formula as in Theorem 1.2.

Forxin P*, definec, := (|Wol/|Wo-AD[T;(ai;. A(j)), and letp := Z,, [k,] be the
set of polynomials in the parametéss with nonnegative integral coefficients. Then
we prove the following theorem.

TueoreM 1.4 We have that; is in %, as are all coefficients afy Py.

Theorem 1.4 is a generalization of the main result of [KS] to arbitrary root sys-
tems. Our proof depends on three fundamental ideas in the “new” theory of special
functions.

The first idea, due to Macdonald, Heckman, Opdam, and others, is that one can
treat root multiplicities on a symmetric space as parameters.

The second idea, due to Dunkl and Cherednik, is that radial parts of invariant
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differential operators on symmetric spaces can be written as polynomials in certain
commuting first-order differential-reflection operators, namely, the Cherednik opera-
tors.

The third idea is the method of intertwiners for Cherednik operators. This was
developed in [KS], [K], [S1], and [CZ2], and it can be regarded as the double affine
analog of Lusztig’s fundamental relation [L2] in the affine Hecke algebra.

Using the intertwiners of [C2] and [S2], our results can be extended to the context
of Macdonald polynomials and to the 6-parameter Koornwinder polynomials. These
intertwiners correspond to the affine Weyl group (rather than the dual affine Weyl
group) and hence amot appropriate for the present context. We shall discuss them
elsewhere in [S3].

2. Preliminaries. The results of this section are due to Cherednik [C1], Heckman,
and Opdam [O].

Let F = R(ky) be the field of rational functions in the parameteysand let: be
the F-span of{e* | A € P} regarded as & -module.

Definition. Fory e Vp, the Cherednik operatdp, is defined by

1
Dy=d,+ Y s ke = (1 =s2) = (v, ), wherep := 5 > kgor.

+ +
txeRO aeRO

Here are some basic facts about Cherednik operators from [O, Section 2].

ProposiTION 2.1 We have the following.
(1) The operatorsD, act on% and commute pairwise.
(2) Fori=1,...,n, we haves; Dy — Dy, ys; = —k; (y, a;).
(3) There is a basi$E, | A € P} of &, characterized uniquely as follows:
(a) the coefficient o* in E; is 1;
(b) DyE; = (y,%)Ey, wherel is as in Definition (1') of the introduction.
(4) For » in PT, the Heckman-Opdam polynomi#&, equals (|Wp - A|/|Wol)
ZwEWO wk;. .y -
(B5) Fori=1,...,n,ifs;-A # A, thens; -A =s; - A.

3. The affine reflection. In this section, we prove some basic properties of the
affine reflectionso.
Lemma 3.1 If « is a positive root different frong, then(aV, 8) equals zero od.

Proof. Sincegisin PT, («", B) is a nonnegative integer. Also, singds a short
root, we havea, @) > (8, 8). So, by the Cauchy-Schwartz inequality, we get

(@) (@ )
@) = @ a2 pie ==

(ocv,ﬂ) =2
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If « # B, thena is not proportional tg8 and the last inequality is strict. O

Fori =0,1,2, defineR) = {« € R{ | (¥, B) =i}, and, fora in Ry, put

, sg-a ifaeRg,
o =
—sp-a if a € RFURS.

Lemma 3.2 The involutiony — o’ acts trivially onRJ and R3, and permutesy.

Proof. For« in R}, we have(@',8) = (@, —sz- ) = («”, ) = 1, which
implies thata’ is a (positive) root inR%. The assertions abouﬁg and Rg = {B} are
obvious. m

LeEmMMA 3.3 For A in P, if sg- A # A, thensg-A = sg- A.

Proof. We computesg-1 = +sp2 using Lemma 3.2 ankl, = k. This gives

~ 1 1
so-A=pB+sg-A+ > Z ko&@v o — > Z Ka€ g/ )@

aeRg aeRéuRS
Comparing this to the expression f@rwith u = sg- 2, it suffices to show that

E@VY,A) if e Rg,
Eav,p) = . 1, p2
—€/v.2) if @ € RjURG.
Fora in Rg, we easily compute that:V, u) = (@, A).
Fora in R}, we get(a¥,n) = (@¥,B+s5-1) = 1— (¥, 2). Being an integer,
@'V, 1) is either less than or equal to zero or greater than or equal to 1. In either case,
we getegv u) = —E/V.2)
Finally, for o in Rg, we haver =o' = B and(BY, u) =2—(BY,1). Now spA # A
implies that(8Y, 1) # 1; thus we have eithegiB¥, 1) > 2 or (8Y,1) < 0. In either
case, we get(ﬂv’x) =E@BV.N) = —EBV,0- O

4. The intertwining relation. Dualizing the actiony — w-y of W on Vp, we
get a representationi— wv of W on V satisfying(wv, y) = (v,w™-y). Fory in
Vo andw in W, we havewy = w-y. The affine reflectiong acts onV by

so(ré+y)=(y,B)0+rd+sgy.

Forv =r8+y in V, we define theffine Cherednik operator simply by putting
D, = D, +rlI,wherel is the identity operator. From Proposition 2.1(2), we know the
intertwining relations between the (affine) Cherednik operatorsand., s,. In this
section, we prove the following intertwining relation between these operatorgand

ProposiTioN 4.1 Forv=r§+y in V, we haveD,sq—soDsy = kg(y, B).
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Proof. Let us writeN, for 1/(1—e™%)(1—s,), SO that
Dy=dy+) ka(y,@)Na—(y,p)+7.
SincespNy = Nyz.o5p andsgdy = 054,55, We get

sgDysg = BSﬁy+ Z ke (y, a)NSﬂ-Ot —(y,p)+r.

aeRg
Now, partitioningRj = RJU R3U R3 and using Lemma 3.2, we get

sgDysg = 8Sﬂy + Z ka(s5y,a)Na — Z ko (s5y,a)N_a —(y,p)+r.
aeRy @€RJUR3Z

The following identities are easy to check:
1) eﬁasgye_ﬁ =055y + (. B);
(2) e Nye P = N, for a € R?;
(3) e N_ye P =1—N, fora e Ré;
(4) e N_ge™# =1—Ng+so.
Using these, we get the following formula fayD, so = e (sg Dysg)e ™

By + (0. B+ Y ka(spy.@)Na— D ka(spy.c) —kg(spy. B)so— (v, p) +7.
aeRf aeRIURZ

SinceZaeR3URg ko(spy,a) = (spy, p—spg-p) = (spy, p) — (¥, p), we get
s0Dyso = Dy, + (v, B) —kp(spy, B)so+r = Dsy +kg(y, B)so.

The result follows. O

5. The Heckman-Opdam polynomials. Let E; be as in Proposition 2.1.

ProposiTION 5.1 The polynomial€), satisfy the following recursions:
(1) Ex=¢e*forre0; B
(2) if s; -1 # A, then(s; + (ki /(a;, 1)) E), is a multiple ofEj; ;..

Proof. For (1), we check simply thab,e* = (y,%)e*, using the identity

A \Y
e If(a ,k):l,
Nae _{o if (. 2) =0.

For (2), we writeF for (s; +(kl-/(a,-,X)))E,\ and first consider # 0. Then, fory
in Vg, using Proposition 2.1(2), we get

)Dy)EF((siy, A)si+ki -——= ( )

—k; i) E
(@ 7) (yd)> A

DyF:(l siy — ki (v, @) +

ki
(a,,k
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Since(y, %) — (v, a:)(ai, &) = (siy, ), using Proposition 2.1(5), we get
DyF = (s[y,X)F = (y,s,- X)F = (y,s:/)»)F.

This proves (2) foi # 0. Fori = 0, we use Proposition 4.1 to get

kp (. %)

@0, (@0.7)

This time, using(y, %) + (a0, 1) (v, B) = (soy, ») and Lemma 3.3, we get
DyF = (soy,X)F = (y,s0~X)F = (y,s;k)F.

DyF=(SODsoy +kg(y,B)+ D}'>E)»=<(50y»x)50+kﬂ +k,3(y,,3)>Ex~

This completes the proof of (2) fer= 0. O

CoroLLARY 5.2 For A in P, and¢; as in Definition (4) of the introduction, we
have _
Ej = (si,, +cm) -+ (si +c1)e™.

Proof. By the minimality ofw;,, if w is apropersubexpression oi;;l =Si, " Siys
thenw - # A. This means that the coefficient @f in (s;, +cm)--- (si, +c1)e’ is 1.

The result now follows from Proposition 5.1. O

m

Proof of Theorem 1.3.This follows from Corollary 5.2 and Proposition 2.1(4).
O

6. Positivity. Let %1 C % be the set of polynomials of degree less than or equal
to 1, with nonnegative integral coefficients angasitiveconstant term. Fox in P,
leta;; andi ;) be as in Definition4’) of the introduction.

ProrosiTION 6.1 Foreachj =1,...,m, (a,-j,)f(\j/)) belongs ta?;.

Proof. Fix j and writeu = A(j), i =i;, andw = Sig e Sij g We need to show
that (a;, ;1) has a positive constant term and nonnegative integral coefficients.
The lengths ofw andws; must bej — 1 and, respectively, since otherwise we
could shorten the expressioq ---s;,, for w,. By a standard argument (see [Hu,
Chapter 5]), this implies thab(a;) is a positive (affine) coroot iR*. Sincexr =z
is minuscule, we conclude that

0 < (w(@), 1) = (aj, w™7) = (ai, .

If (a;,n) were zero, therk(jy1) = s, -u = u = A¢j) and we could shorten the
expression fow, by droppings;;. This shows thata;, ), which is the constant term
of (a;, 1), is positive.

If i =0, the nonconstant part &g, 1) is

1
) Z ka€ @, ) (ﬂv’ @),

+
aERy
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and we consider separately the contribution®pf RS, and R3.

Fora in Rg, the contribution is zero.

Fora = B in R?, we get the term-egv ) kg. By the first part(ao, 1) is a positive
integer. Hencép", 1) = 1— (ao, 1) < 0, which implies that-¢gv ,) = 1.

The roots ichl) can be grouped in pairfs, —sg -}, and the contribution of such
a pair is

E@Y,p) T E(=spa, )
—kyg 5 B (ﬂv,a).

Now (BY,a) is positive, so the coefficient above is a nonnegative integer, unless
(¥, ) and(—sga”, u) are both greater than zero. But in this case, we would get

0< (o )~ (spa 1) = (a1 —55-1) = (8" )", 8) <.

which is a contradiction.
The argument is similar if > 0. The nonconstant part ¢f;, /1) is

1
E Z kag(otv,u) (ai,a).

+
a€ERy

To compute this, we divid(Ra‘ into three disjoint sets consisting &f;}, {the roots
orthogonal tay; }, and{the remaining positive rogtsFora = «;, we get the coefficient
&(a;.u)» Which is 1 since(a;, ) > 0 by the first part. lfe is orthogonal tay;, then

the coefficient is zero. Finally, the remaining positive roots can be grouped into pairs
{a,s; -a}, where we may assume that”,«;) > 0. The contribution of each such
pair is

EaV —E(¢:yV
k, (e, ) (sia, 1) (a,

2

o).

Now (aY,a;) > 0 implies (a;, @) > 0. Therefore, this coefficient is a nonnegative
integer, unlesga", 1) < 0 and(s;a¥, ) > 0. But if this were the case, then we
would have

0> (av,ﬂ) - (siav9 /’L) = (a\/?/’b_si M) = (al‘9/’b)(avsai) > Oa

which is a contradiction. O
Proof of Theorem 1.4.This follows from Theorem 1.3 and Proposition 6.1.0]
Setting all thek,’s equal to 1 in Proposition 6.1, we deduce the following corollary.

CoroLLARY 6.2 The constants; andc; in Theorems 1.1 and 1.2 are positive.



84 SIDDHARTHA SAHI

REFERENCES

[C1] 1. CHEREDNIK, Double affine Hecke algebras and Macdonald’s conjectutem. of Math.

(2) 141(1997), 191-216.

, Intertwining operators of double affine Hecke algebr&glecta Math. (N.S.3

(1997), 459-495.

[F] H. FREUDENTHAL, Zur Berechnung der Charaktere der halbeinfachen Lieschen Gruppen, |
Indag. Math.16 (1954), 369-376.

[HSc] G. HEckMAN AND H. ScHLICHTKRULL, Harmonic Analysis and Special Functions on Sym-
metric SpacesPerspect. Mathl6, Academic Press, San Diego, 1994.

[Hu] J. HumpHREYS, Reflection Groups and Coxeter Groygsambridge Stud. Adv. Math29,
Cambridge Univ. Press, Cambridge, 1990.

[C2]

K] F. Knop, Integrality of two variable Kostka functions. Reine Angew. Math482 (1997),
177-189.

[KS] F. Knop AND S. SaHI, A recursion and a combinatorial formula for Jack polynomjatsent.
Math.128(1997), 9-22.

[Ko] T. KOORNWINDER, “Askey-Wilson polynomials for root systems of tyg@C” in Hyper-

geometric Functions on Domains of Positivity, Jack Polynomials, and Applications
(Tampa, Fla., 1991)Contemp. Math138 Amer. Math. Soc., Providence, 1992,

189-204.

[Ks] B. KostanT, A formula for the multiplicity of a weighfTrans. Amer. Math. So@3 (1959),
53-73.

[Li] P. LITTELMANN, Paths and root operators in representation theofyn. of Math. (2)142
(1995), 499-525.

[L1] G. LuszTig, “Singularities, character formulas, ang;@analog of weight multiplicities” in
Analysis and Topology on Singular Spaces, I, Il (Luminy, 198&}érisquel0l-

102 Soc. Math. France, Montrouge, 1983, 208—299.

[L2] , Affine Hecke algebras and their graded versidn Amer. Math. Soc2 (1989),
599-635.

[M] 1. MacponALD, Affine Hecke algebras and orthogonal polynomidlstérisque237(1996),
189-207, Séminaire Bourbaki 1994/95, exp. no. 797.

[O] E. Oppam, Harmonic analysis for certain representations of graded Hecke algebBrets
Math. 175(1995), 75-121.

[S1] S. SaHi, Interpolation, integrality, and a generalization of Macdonald’s polynomikiger-
nat. Math. Res. Notices996 457-471.

[S2] , Nonsymmetric Koornwinder polynomials and duality appear in Ann. of Math.
2).

[S3] , Some properties of Koornwinder polynomiats appear in Contemp. Math.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEwW JERSEY 08903
USA; sahi@math.rutgers.edu



