1 Lecture 1 (1/18/2011)

Definition 1 A proposition is a sentence that is either true (T) or false (F).

Example 2 $\boxed{1+2=3}$ and $\boxed{1+2=4}$ are propositions. $\boxed{\text{Tutankhamen had a lisp}}$ is also a proposition even though we do not know its truth value. However $\boxed{\text{Who was that2}}$ is not a proposition, and neither is $\boxed{x=y}$, unless x and y have been defined previously.

Definition 3 If P, Q are propositions then we define three new propositions as follows:

- 1. $P \wedge Q$ ("P and Q"), which is true if and only if P, Q are both true.
- 2. $P \vee Q$ ("P or Q"), which is false if and only if P,Q are both false.
- 3. $\sim P$ ("not P"), which is true if and only if P is false.

Example 4 Black is white and 1+2=3 is false. Black is white or 1+2=3 is true. It is not the case that black is white is true.

"and", "or", "not" (\land, \lor, \sim) are called *connectives*; propositions formed using connectives are called *compound* propositions.

Definition 5 A (propositional) formula is an expression constructed using

- 1. finitely many variables P_1, P_2, \dots, P_n that represent propositions
- 2. finitely many connectives \land , \lor , \sim
- 3. finitely many grouping symbols such as parentheses

with the property that if we assign a truth value to each variable then the formula acquires a well-defined truth value using the rules of Definition 3.

Example 6 $P \wedge Q$, $P \vee Q$, $\sim P$ are all formulas. $(P \wedge Q) \vee R$, $P \wedge (Q \vee R)$ are both formulas, but $P \wedge Q \vee R$ is not a valid formula. (Why not?)

Definition 7 The truth table of a formula $f(P_1, \dots, P_n)$ is a table that has one column for each variable plus one column for f; it has one row for each possible truth value assignment of the variables along with the corresponding truth value of the formula. If f_1, f_2, \dots are several formulas we can construct a simultaneous truth table by including one column for each formula.

Example 8 The simultaneous truth table for $P \wedge Q$, $P \vee Q$, $\sim P$ is as follows

P	Q	$P \wedge Q$	$P \lor Q$	$\sim P$
T	T	T	T	F
\overline{F}	T	F	T	T
T	F	F	T	F
\overline{F}	\overline{F}	F	F	T

Note that even though $\sim P$ does not involve Q, we can include it in the above table by ignoring Q. We can also draw a separate smaller table for $\sim P$.

P	~P	
T	F	
F	T	

Definition 9 A formula $f(P_1, \dots, P_n)$ is called a tautology if it is always true, i.e. it is true for every choice of truth values of the variables P_1, \dots, P_n . A formula $f(P_1, \dots, P_n)$ is called a contradiction if it is always false.

Example 10 $P \lor (\sim P)$ is a tautology, $P \land (\sim P)$ is a contradiction.

P	$\sim P$	$P \lor (\sim P)$	$P \wedge (\sim P)$
T	F	T	F
F	T	T	F

Definition 11 Two formulas $f(P_1, \dots, P_n)$ and $g(P_1, \dots, P_n)$ are said to be equivalent if they have the same truth table. A denial of a formula $f(P_1, \dots, P_n)$ is a formula equivalent to $\sim f(P_1, \dots, P_n)$.

Example 12 $(\sim P) \land (\sim Q)$ is a denial of $P \lor Q$

P	Q	$\sim P$	$\sim Q$	$(\sim P) \land (\sim Q)$	$P \lor Q$	$\sim (P \vee Q)$
T	T	F	F	F	T	F
F	T	T	F	F	T	F
T	F	F	T	F	T	F
F	F	T	T	T	F	T

1.1 Exercises

- 1. Show using a truth table that $(\sim P) \vee (\sim Q)$ is a denial of $P \wedge Q$.
- 2. Show using a truth table that $(P \land Q) \lor R$, $P \land (Q \lor R)$ are not equivalent.
- 3. The xor (exclusive or), denoted \oplus , is a connective defined so that $P \oplus Q$ is true if and only if exactly one of P,Q is true. Show using a truth table that $P \oplus Q$ is equivalent to $(P \vee Q) \land \sim (P \land Q)$.
- 4. Let f(P,Q) and g(P,R) be two tautologies; show that f,g are equivalent by considering a simultaneous truth table in P,Q,R. Are any two tautologies equivalent, even if they involve different variables?