1 Lecture 5 (2/3/2011)

Key Terms: Theorem, Proof, Modus Ponens, Key Symbols: ⊢

1.1 Proofs

Definition 1 A theorem is a statement of the form "If H_1, \dots, H_n are true then Q is true". Here the H_i are propositions called hypotheses and Q is a proposition called the conclusion.

Definition 2 A proof of a theorem is a list of propositions P_1, P_2, \dots, P_k , where the last proposition is $P_k = Q$, and each P_i is one of the following:

- 1. A hypothesis (H)
- 2. A tautology (T)
- 3. Obtained from two preceding propositions by the Modus Ponens rule (M)

The Modus Ponens rule simply says "if the propositions A and $A \Rightarrow B$ have previously occurred in the list then we are allowed to write down B".

It is a good idea to think of P_1, P_2, \dots, P_k as the moves of a solitaire game (or a maze) in which objective is to reach the conclusion Q. Conditions 1, 2, 3 are the rules of the game that tell us whether a move is legal or not.

If Q is provable from H_1, \dots, H_n then we write

$$H_1, \cdots, H_n \vdash Q.$$

We now look at some simple examples.

Theorem 3 (E) If P, "P is equivalent to Q" are true then Q is true.

Proof.	P	$P \Leftrightarrow Q$	$(P \Leftrightarrow Q) \Rightarrow (P \Rightarrow Q)$	$P \Rightarrow Q$	Q
	Η	Н	Т	Μ	Μ

Theorem 4 (C) If P, Q are true then $P \wedge Q$ is true.

Proof.	P	Q	$P \Rightarrow (Q \Rightarrow (P \land Q))$	$Q \Rightarrow (P \land Q)$	$P \wedge Q$		
	Η	Η	Т	М	М		
We can use the above theorems to shorten other proofs.							

Theorem 5 (O) If $\sim P, P \lor Q$ are true then Q is true.

Proof.	$\sim P$	$P \lor Q$	$(\sim P) \land (P \lor Q)$	$(\sim P) \land (P \lor Q) \Rightarrow Q$	Q
	Н	Η	С	Т	Μ

In all cases the central tautology of the proof is easily verified.

1.2 Exercises

For the first two exercises, use a truth table:

- 1. Verify the tautologies of Theorems E, C, O.
- 2. Show that $(P \wedge Q) \wedge R$ and $P \wedge (Q \wedge R)$ are equivalent.

The next two exercises are a formalized version of Ex 1.4.4. in the text, and should be proved in a manner similar to Theorems O. You can use Theorems E,C,O to shorten your proofs. In each case only state the hypotheses you need.

Consider the statements

$${\sim}P \Rightarrow K, M \Rightarrow P, C \Rightarrow {\sim}S, {\sim}S \Rightarrow C, C \lor L, S \lor P$$

and prove the following theorems:

- 3. If the above statements and $\sim L$ are true then P is true.
- 4. If the above statements and $\sim M, \sim C$ are true then P is true.