1 The fundamental theorem of algebra mod p

In number theory we consider polynomials with integer coefficients

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n$$

An integer a is said to be a root of $f \mod m$, if $f(a)$ is divisible by m. We say that f has \textit{“}k\textit{ roots mod m\textit{”} if there are k roots among the integers $0, 1, \ldots, m - 1$. Any other root of f will be congruent to one of these, and any complete residue system mod m will contain exactly k roots.

If all coefficients of f are divisible by m, we say that $f \equiv 0 \mod m$, in this case every a is a root of $f \mod m$.

The fundamental theorem of algebra holds for roots modulo a prime p.

\textbf{Theorem 1} \hspace{2mm} \textit{Let p be a prime and $f(x)$ a polynomial of degree n with integer coefficients. If } f \not\equiv 0 \mod p, \textit{ then $f(x)$ has at most n roots mod p.}

\textbf{Proof}. We proceed by induction on n. For $n = 0$ the polynomial $f(x)$ is a constant a_0 where $p \nmid a_0$. Hence f has no roots mod p, and the result holds.

We now assume the result for polynomials of degree $\leq n - 1$ and consider

$$f(x) \equiv a_0 + a_1 x + \ldots + a_n x^n.$$

Suppose f has $n + 1$ roots mod p, we need to show that $f \equiv 0 \mod p$.

Let $b_1, b_2, \ldots, b_{n+1}$ be roots of f and define

$$g(x) = a_n (x - b_1) (x - b_2) \ldots (x - b_n)$$

$$h(x) = f(x) - g(x).$$

Note that $\deg_p(h) \leq n - 1$, since the degree n terms cancel. Also $h(b_i) = f(b_i) - g(b_i) \equiv 0 \mod p$, for all $i = 1, \ldots, n$. Hence by induction $h \equiv 0 \mod p$.

Now $g(b_{n+1}) = f(b_{n+1}) - h(b_{n+1}) \equiv 0 \mod p$, hence p divides

$$g(b_{n+1}) = a_n (b_{n+1} - b_1) (b_{n+1} - b_2) \ldots (b_{n+1} - b_n)$$

Also $p \nmid b_{n+1} - b_i$, since the b_i are incongruent mod p. Therefore p divides a_n, and hence $g \equiv 0 \mod p$.

Hence $f = h + g \equiv 0 \mod p$ as well. \hfill \blacksquare
2 Order mod \(m \)

Definition 2 If \(m \) and \(a \) are positive integers, we define \(o_m (a) \) (the order of a mod \(m \)) to be the smallest integer \(h > 0 \) such that \(a^h \equiv 1 \) mod \(m \).

[If there is no such \(h \) we say \(o_m (a) = \infty \).]

Lemma 3 If \(a^n \equiv 1 \mod m \) then \(o_m (a) \) divides \(n \).

Proof. Let \(h = o_m (a) \) and write \(n = qh + r \) where \(0 \leq r < h \). Now
\[
1 \equiv a^n = a^{qh+r} = a^{qh}a^r = (a^h)^q a^r \equiv (1)^q a^r = a^r \pmod{m}
\]
Since \(r < h = o_m (a) \), this forces \(r = 0 \). Hence \(n = qh \) and \(h \) divides \(n \). ■

Proposition 4 If \(\gcd (a, m) > 1 \) then \(o_m (a) = \infty \). If \(\gcd (a, m) = 1 \) then \(o_m (a) \) divides \(\phi (m) \).

Proof. If \(\gcd (a, m) = d > 1 \) then \(d \mid a^h \) for all \(h > 0 \) \(\Rightarrow d \nmid a^h - 1 \). Since \(d \) divides \(m \), \(m \nmid a^h - 1 \) \(\Rightarrow a^h \not\equiv 1 \) mod \(m \) for all \(h > 0 \) \(\Rightarrow o_m (a) = \infty \).

If \(\gcd (a, m) = 1 \), then by Euler’s theorem \(a^{\phi (m)} \equiv 1 \pmod{m} \). So by the previous lemma \(o_m (a) \) divides \(\phi (m) \). ■

Lemma 5 Suppose \(\gcd (a, m) = 1 \); let \(\langle a \rangle = \{a^1, a^2, \ldots, a^h\} \) where \(h = o_m (a) \).

1. The elements of \(\langle a \rangle \) are coprime to \(m \) and pairwise incongruent mod \(m \).

2. \(\langle a \rangle \) contains at most \(\phi (h) \) integers \(a^k \) such that \(o_m (a^k) = h \).

Proof. Since \(a \) is coprime to \(m \), so is each \(a^k \). If \(a^k \equiv a^{k+r} \mod m \) for some \(h > r \geq 0 \), then \(a^r \equiv 1 \mod m \), which forces \(r = 0 \).

If \(d = \gcd (k, h) > 1 \), then \(\langle a^k \rangle^{h/d} = \langle a^h \rangle^{k/d} \equiv 1 \mod m \). Thus \(o_m (a^k) < h \) except perhaps for the \(\phi (h) \) integers \(k \) satisfying \(\gcd (k, h) = 1 \). ■

If \(o_m (a) = \phi (m) \) then the lemma implies that \(\langle a \rangle \) is a reduced residue system mod \(m \). In this case we say that \(a \) is a primitive root mod \(m \).

Notation 6 For each \(h \), we write \(S_m (h) = \{a : 0 < a < m, \ o_m (a) = h\} \).

3 Primitive roots mod \(p \)

Lemma 7 If \(p \) is a prime then \(|S_p (h)| \leq \phi (h) \) for each \(h \).

Proof. If \(|S_p (h)| = 0 \) there is nothing to prove. Otherwise pick \(a \in S_p (h) \) and write \(\langle a \rangle = \{a^1, a^2, \ldots, a^h\} \) as before. The \(h \) elements of \(\langle a \rangle \) are incongruent mod \(p \), and all satisfy the congruence
\[
x^h \equiv 1 \pmod{p}.
\]
Since \(p \) is a prime, this congruence has at most \(h \) roots mod \(p \). Therefore any other root must be congruent to an integer from \(\langle a \rangle \). In particular the elements of \(S_p (h) \) must be congruent to elements of \(\langle a \rangle \) satisfying \(o_m (a^k) = h \). By the previous lemma, there are \(\leq \phi (h) \) such elements. ■
\textbf{Theorem 8} If \(p \) is a prime then \(|S_p(h)| = \begin{cases} \phi(h) & \text{if } h \mid (p-1) \\ 0 & \text{otherwise} \end{cases} \).

\textbf{Proof.} If \(h \nmid (p-1) \) then by the previous proposition \(|S_p(h)| = 0 \), thus
\[
\{1,2,\ldots,p-1\} = \bigcup_{h \mid (p-1)} S_p(h).
\]
Computing the sizes of these sets and using the previous lemma gives
\[
p - 1 = \sum_{h \mid (p-1)} |S_p(h)| \leq \sum_{h \mid (p-1)} \phi(h) = p - 1.
\]
Therefore the equality \(|S_p(h)| = \phi(h) \) must hold for every \(h \mid (p-1) \). \(\blacksquare \)

\textbf{Corollary 9} If \(p \) is a prime then there exist primitive roots mod \(p \).

\textbf{Proof.} \(|S_p(p-1)| = \phi(p-1) \neq 0 \). \(\blacksquare \)