Math 300, Lecture 17, Siddhartha Sahi

1 More on induction

1.1 Review of mathematical induction (PMI)

Let \(P(n) \) be an open sentence with universe \(\mathbb{N} \). Recall that the principle of mathematical induction (PMI) asserts that the following implication

\[
P(1) \land [\forall k \ P(k) \Rightarrow P(k + 1)] \implies \forall n P(n)
\]

Usually we are interested in proving a theorem of the form \(\forall n P(n) \) and we prove this by separately showing \(P(1) \) and \(\forall k \ P(k) \Rightarrow P(k + 1) \).

All proofs by induction look like the following:

Proof. ***

Therefore \(P(1) \) is true.

Let \(k \) be a natural number and suppose \(P(k) \) is true.

Therefore \(P(k + 1) \) is true.

By PMI, \(P(n) \) is true for all natural numbers \(n \). \(\square \)

Remark 1

1. Before starting the proof, you should write down separately the following 4 key sentences: \(P(1) \), \(P(k) \), \(P(k + 1) \), \(P(n) \). These go into the boxed places in the proof.

2. The heart of the proof is in the two places marked *** and ooo. Of these, the *** part is usually easy, while the ooo part involves some idea that connects \(P(k) \) to \(P(k + 1) \). Two notes of caution about the ooo part:

 (a) You must deduce \(P(k + 1) \) from \(P(k) \) using a correct and complete argument.

 (b) Do not assume \(P(k + 1) \) in ooo; you are trying to prove \(P(k + 1) \)!

Here is a proof by induction of a theorem similar to a homework problem.

Theorem 2 Let \(m \in \mathbb{N} \); then for all \(n \in \mathbb{N} \), \(m \) divides \((m + 1)^n - 1 \).

Before starting the proof, we write down the 4 key sentences

\[
\begin{array}{|c|c|c|c|c|}
\hline
P(1) & m \text{ divides } (m + 1)^1 - 1 & P(k) & m \text{ divides } (m + 1)^k - 1 & P(n) & m \text{ divides } (m + 1)^n - 1 \\
\hline
P(k + 1) & m \text{ divides } (m + 1)^{k+1} - 1 & P(n) & m \text{ divides } (m + 1)^n - 1 \\
\hline
\end{array}
\]
Proof. Let \(m \) be a natural number, then \((m + 1)^1 - 1 = m + 1 - 1 = m\). Therefore \(m \) divides \((m + 1)^1 - 1\).

Let \(k \) be a natural number and suppose that \(m \) divides \((m + 1)^k - 1\).

Then there exists an integer \(l \) such that \((m + 1)^k - 1 = lm\).
Therefore \((m + 1)^{k+1} - 1 = (m + 1)(m + 1)^k - 1 = (m + 1)(lm + 1) - 1 = lm^2 + lm + m + 1 - 1 = m(lm + l + 1)\)

Since \(l, m \) are integers, \(lm + l + 1 \) is an integer.
Therefore \(m \) divides \((m + 1)^{k+1} - 1\).
By PMI \(m \) divides \((m + 1)^n - 1\) for all natural numbers \(n \). ■

Remark 3 The boxed sentences are “boiler-plate”, i.e. common to all induction proofs. The unboxed parts contain the main ideas. The connection between \(P(k) \) and \(P(k+1) \) is provided by the arithmetic in the displayed formula.

1.2 Generalized induction (PGI)

Let \(\mathbb{Z}_{\geq l} \) denote the set of integers \(\geq l \); thus
\[
\mathbb{Z}_{\geq l} = \{ x \in \mathbb{Z} \mid x \geq l \} = \{ l, l+1, l+2, \cdots \}
\]

Let \(m = l - 1 \), then we have
\[
\mathbb{Z}_{\geq l} = \{ m + 1, m + 2, \cdots \} = \{ m + n \mid n \in \mathbb{N} \}
\] (1)

The principle of generalized induction (PGI) is the following theorem:

Theorem 4 Suppose \(P(n) \) is an open sentence with universe \(\mathbb{Z}_{\geq l} \), such that

1. \(P(l) \) is true
2. \(\forall k \geq l \) we have \(P(k) \Rightarrow P(k+1) \).

Then \(P(n) \) is true for all integers \(n \geq l \).

Proof. We leave the proof as an exercise. The main ideas are as follows:

1. Let \(m = l - 1 \) as in (1) and define a new sentence \(Q \) with universe \(\mathbb{N} \) as follows
 \[Q(n) = P(m + n) \]
2. Prove that \(Q(n) \) is true for all \(n \in \mathbb{N} \) using PMI.
3. Deduce that \(P(n) \) is true for all integers \(n \geq l \).
1.3 Complete induction (PCI)

The principle of complete induction (PCI) is the following theorem:

Theorem 5 Suppose \(P(n) \) is an open sentence with universe \(\mathbb{Z}_{\geq l} \), such that

1. \(P(l) \) is true
2. \(\forall k \geq l \) we have \(P(l) \land P(l+1) \land \cdots \land P(k) \Rightarrow P(k+1) \).

Then \(P(n) \) is true for all integers \(n \geq l \).

Proof. We leave the proof as an exercise. The main idea are as follows:

1. Define a new sentence \(R(n) \) with universe \(\mathbb{Z}_{\geq l} \) as follows
 \[R(n) = P(l) \land P(l+1) \land \cdots \land P(n) \]
2. Prove that \(R(n) \) is true for all \(n \geq l \) using generalized induction.
3. Deduce that \(P(n) \) is true for all integers \(n \geq l \).

Complete induction is useful when one cannot easily connect \(P(k+1) \) to \(P(k) \) alone, but one can relate \(P(k+1) \) to \(P(j) \) for some other \(j \) with \(l \leq j \leq k \). Such a situation often arises when one considers questions involving divisibility. As we shall see in the next section.

1.4 Prime factorization

Recall that a natural number \(n \) is called a prime if \(n \geq 2 \) and \(n \) is not divisible by any natural numbers other than 1 and \(n \).

Lemma 6 If \(n \geq 2 \) and \(n \) is not a prime then there are \(a, b \in \mathbb{N} \) such that

\[n = ab, 1 < a < n, 1 < b < n \]

Proof. Let \(n \) be a natural number \(\geq 2 \) and suppose \(n \) is not a prime. By definition \(n \) is divisible by a natural number \(a \) that is different from 1 and \(n \). Therefore we can write \(n = ab \) for some natural number \(b \). Since \(a \) and \(b \) divide \(n \) we have

\[1 \leq a \leq n, 1 \leq b \leq n \tag{2} \]

By assumption \(a \neq 1, n \). Suppose \(b = 1 \), then since \(n = ab \) we get \(a = n \), which is a contradiction; therefore we must have \(b \neq 1 \). Similarly we deduce \(b \neq n \). Combining this with (2) we get

\[1 < a < n, 1 < b < n \]

thereby proving the result. ■

For small numbers it is easy to see that we can write them as products of primes. For example

\[2 = 2, 12 = 2 \cdot 2, 3, 25 = 5 \cdot 5 \]
Theorem 7 Every natural number \(n \geq 2 \) can be written as a product of primes.

Proof. Since 2 is a prime number, 2 can be written as product of primes.
Let \(k \) be a natural number \(\geq 2 \) and suppose that each of the numbers 2, 3, \(\ldots \), \(k \) can be written as a product of primes.
We consider two cases for \(k + 1 \). First suppose \(k + 1 \) is prime. Then \(k + 1 \) can be written as a product of primes. Next suppose \(k + 1 \) is not prime, then by the previous lemma, there exist \(a, b \in \mathbb{N} \) such that
\[
k + 1 = ab, 1 < a < k + 1, 1 < b < k + 1
\]
Since \(a \) and \(b \) are integers, they belong to the set \(\{2, 3, \ldots, k\} \). By assumption each of \(a, b \) can be written as a product of primes. Thus we can write
\[
a = p_1 \ldots p_r, \quad b = q_1 \ldots q_s
\]
where \(p_1, \ldots, p_r \) and \(q_1, \ldots, q_s \) are all prime numbers. Now we have
\[
k + 1 = ab = p_1 \ldots p_r q_1 \ldots q_s.
\]
Therefore \(k + 1 \) can also be written as a product of primes.

By PCI every natural number \(n \geq 2 \) can be written as a product of primes.

1.5 Exercises
1. Write a complete and correct proof of Theorem 4.
2. Write a complete and correct proof of Theorem 5.
3. Use PMI to prove that \(\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!} \) for all \(n \in \mathbb{N} \).
4. Use PGI to prove \(\left(\frac{2^2-1}{2^2}\right) \cdot \left(\frac{3^2-1}{3^2}\right) \cdots \left(\frac{n^2-1}{n^2}\right) = \frac{n+1}{2n} \) for all \(n \geq 2 \).