Algebra Lecture Notes - Galois Theory

Siddhartha Sahi
February 10, 2007

1 Galois extensions

Let F be a field. The set of all automorphisms of F is a group $\text{Aut} (F)$. Write $\mathcal{A} = \{ \text{subgroups of } \text{Aut} (F) \}$ and $\mathcal{F} = \{ \text{subfields of } F \}$. Then we have two order reversing maps $\phi : \mathcal{A} \to \mathcal{F}$ and $\gamma : \mathcal{F} \to \mathcal{A}$ defined by

1. $\phi (G) = F^G$ (fixed field of G)
2. $\gamma (K) = \text{Aut}_K (F) = \text{Gal} (F/K)$ (Galois group of F/K)

It is easy to see that $\phi \gamma (K) \supset K$ and $\gamma \phi (G) \supset G$. Since ϕ, γ are order-reversing it even follows that $\gamma \phi \gamma (K) = \gamma (K)$ and $\phi \gamma \phi (G) = \phi (G)$. Nevertheless the two maps are not quite inverses (examples!). The first result of Galois Theory is as follows:

Theorem 1 $\gamma \phi (G) = G$ for any finite subgroup of \mathcal{A}.

The main idea is the following numerical result, where we write $\text{ind} (K) = [F : K] = \dim_K (F)$:

Proposition 2 For any $G < \mathcal{A}$, either $|G| = \text{ind} (F^G)$ or both numbers are infinite.

Proof of the Theorem. Let $H = \gamma \phi (G)$ then we need to prove $H = G$. Note that we have

$$F^H = \phi (H) = \phi \gamma \phi (G) = \phi (G) = F^G.$$

If $|G|$ is finite then applying the proposition twice we conclude that

$$|G| = \text{ind} (F^G) = \text{ind} (F^H) = |H|.$$

Since we have $H \supset G$ (why?), it follows that $H = G$. ■

The proof of the proposition (following Dedekind and Artin) involves two lemmas. If S is a set, we write $\text{Map}(S,F)$ for the set of all maps from S to F; this is naturally an F vector space.
Lemma 3 \(\text{Aut} (F) \) is a linearly independent subset of \(\text{Map} (F, F) \).

Proof. If not, choose a minimal nontrivial dependence relation; i.e. choose \(\sigma_i \in \text{Aut} (F) \) and \(b_i \in F^\times \) such that

\[
b_1 \sigma_1 (\alpha) + b_2 \sigma_2 (\alpha) + \cdots + b_m \sigma_m (\alpha) = 0 \text{ for all } \alpha \in F.
\]

and \(m \) is minimal. We will arrive at a contradiction by showing it is possible to reduce \(m \) further.

We may assume \(m \geq 2 \) and \(\sigma_1 \neq \sigma_m \) (why?). So pick \(\beta \in F \) such that \(\sigma_1 (\beta) \neq \sigma_m (\beta) \). Modify the above equation in two ways – first replace \(\alpha \) by \(\beta \alpha \) and second simply multiply by \(\sigma_1 (\beta) \). Since \(\sigma_i (\beta \alpha) = \sigma_i (\beta) \sigma_i (\alpha) \) subtracting the two expressions gives the new relation

\[
c_1 \sigma_1 (\alpha) + c_2 \sigma_2 (\alpha) + \cdots + c_m \sigma_m (\alpha) = 0 \text{ for all } \alpha \in F.
\]

where \(c_i = b_i [\sigma_i (\beta) - \sigma_1 (\beta)] \). Now we have \(c_1 = 0 \), but \(c_m \neq 0 \); therefore this is a smaller non-trivial dependence relation. ■

For a subgroup \(G \) of \(\text{Aut} (F) \), consider the evaluation map \(e : F \to \text{Map} (G, F) \)

\[
e (a)(\sigma) = \sigma (a)
\]

this is easily seen to be \(F^G \)-linear.

Lemma 4 The map \(e \) takes \(F^G \)-independent sets to \(F \)-independent sets.

Proof. If not, choose a minimal nontrivial dependence relation; i.e. choose \(K \)-independent \(\alpha_i \) in \(F \), and coefficients \(b_i \in F^\times \) such that

\[
b_1 \sigma_1 (\alpha_1) + b_2 \sigma_2 (\alpha_2) + \cdots + b_n \sigma_n (\alpha_n) = 0 \text{ for all } \sigma \text{ in } G.
\]

and \(n \) is minimal. We will arrive at a contradiction by showing it is possible to reduce \(n \) further.

We may assume \(n \geq 2 \), \(b_1 = 1 \), and then \(b_n \notin F^G \) (why?). So pick \(\tau \) in \(G \) such that \(\tau (b_n) \neq b_n \). In the above equation, replace \(\sigma \) by \(\tau^{-1} \sigma \) and apply \(\tau \). Since \(\tau [b_i \tau^{-1} \sigma (\alpha_i)] = \tau (b_i) \sigma (\alpha_i) \), subtracting the new equation from the original gives the relation

\[
c_1 \sigma_1 (\alpha_1) + c_2 \sigma_2 (\alpha_2) + \cdots + c_n \sigma_n (\alpha_n) = 0 \text{ for all } \sigma \text{ in } G.
\]

where \(c_i = b_i - \tau (b_i) \). Now we have \(c_1 = 0 \), but \(c_n \neq 0 \); therefore this is a smaller non-trivial dependence relation. ■

Proof of Proposition. For a finite subset \(S = \{ \sigma_1, \ldots, \sigma_m \} \subset G \) and a finite \(F^G \)-independent subset \(T = \{ \alpha_1, \ldots, \alpha_n \} \subset F \), we consider the \(m \times n \) matrix \(M_{S,T} = (\sigma_i (\alpha_j)) \).

If \(\text{ind} (F^G) \) is finite, choose \(T \) to be an \(F^G \)-basis of \(F \). Then by the first lemma, the rows of \(M_{S,T} \) are \(F \)-independent (verify!). Therefore we have \(m \leq n = \text{ind} (F^G) \) and hence \(|G| \leq \text{ind} (F^G) \). In particular, \(|G| \) is also finite.

If \(|G| \) is finite, then choose \(S = G \). Now by the second lemma, the columns of \(M_{S,T} \) are \(F \)-independent (verify!). Therefore we have \(n \leq m = |G| \), and hence \(\text{ind} (F^G) \leq |G| \). In particular \(\text{ind} (F^G) \) is finite. ■
Definition 5 \(F/K \) is said to be a Galois extension if \(\phi\gamma(K) = K \).

Then we have two characterization of Galois extensions.

Corollary 6 Let \(G \) be a finite group, TFAE

1. \(F/K \) is a finite Galois extension with \(\text{Aut}_K(F) = G \)
2. \(K = F^G \).

Proof. For \(1 \Rightarrow 2 \), we use \(\phi(G) = \phi\gamma(K) = K \).
For \(2 \Rightarrow 1 \), we note that \(\phi\gamma(K) = \phi\gamma\phi(G) = \phi(G) = K \), and \(\text{Aut}_K(F) = \gamma\phi(G) = G \) by the theorem.

Corollary 7 Let \(F/K \) be a finite extension. TFAE

1. \(F/K \) is Galois.
2. \([F:K] = |\text{Aut}_K(F)| \).

Proof. Let \(G = \text{Aut}_K(F) \), then clearly \(F^G \supseteq K \), and by the proposition \([F:F^G] = |G| \). Therefore we have \([F:K] = |G| \iff K = F^G \iff F/K \) is Galois.

Exercise 8 Show that \(\gamma(K) \) is a group, \(\phi(G) \) is a field and \(\gamma, \phi \) are order-reversing.

Exercise 9 Show that \(\phi\gamma(K) \supseteq K \) and \(\gamma\phi(G) \supseteq G \), \(\gamma\phi(G) = \gamma(K) \) and \(\phi\gamma\phi(G) = \phi(G) \).

Exercise 10 Give examples such that \(\phi\gamma(K) \neq K \) and \(\gamma\phi(G) \neq G \).

Exercise 11 Explain the "whys" in the proof of the theorem.

Exercise 12 Prove the \(F^G \)-linearity of \(e \).

Exercise 13 Justify the "we may assume ..." in the proofs of the two lemmas.

Exercise 14 Verify the two \(F \)-independence assertions in the proof of the proposition.
2 Imbeddings and splitting fields

If E is a finite (dimensional) extension of K and $\alpha \in E$, then the powers of α are linearly dependent over K. Therefore α is algebraic over K; i.e. it is the root of a K-polynomial p, which we may choose to be monic and of minimal degree. It follows then that p is irreducible (why?) and hence $K[x]/(p)$ is a field. Now since $x \mapsto \alpha$ defines a natural ring homomorphism $K[x]/(p) \to K[\alpha]$, it follows that (why?)

1. The image is a field and hence equals $K(\alpha)$ (and $K[\alpha]$).
2. α and K uniquely determine p – the minimal polynomial of α over K.
3. $\deg(p) = \deg([K(\alpha) : K])$ divides $[E:K]$.

Lemma 15 Let E/K be a finite field extension. Given an imbedding $\sigma : K \to L$ there exists a finite field extension F/L and an imbedding $\tau : E \to F$ extending σ:

\[
\begin{array}{ccc}
E & \xrightarrow{\sigma} & F \\
\uparrow & \circ & \uparrow \\
K & \xrightarrow{\tau} & L
\end{array}
\]

More generally, given $\sigma_i : K \to L$ for $i = 1, \ldots, n$ there exists a finite field extension F/L and imbeddings $\tau_i : E \to F$ extending σ_i.

Proof. Let $f \in K[x]$ be the minimum polynomial of some $\alpha \in E \setminus K$, and let $p \in L[x]$ be an irreducible factor of f^σ. Then we get an imbedding from $K(\alpha) \approx K[x]/(f)$ to $L[x]/(p)$ which extends σ, and the result follows by induction on $[E:K]$. For the general case, we extend the σ_i one at a time to successively larger finite field extensions.

Definition 16 If E is generated over K by the roots of a K-polynomial f, then we say that E is a splitting field of f over K.

Theorem 17 Every $f \in K[x]$ of degree n admits a splitting field E with $[E:K] \leq n!$. Any two splitting fields are isomorphic.

Proof. We proceed by induction on $n = \deg(f)$. If p is an irreducible factor of f, then $L = K[x]/(p)$ is a field with $[L:K] = \deg(p) \leq n$. Moreover $L = K(\xi)$ where $\xi := \overline{f}$ is a root of f (why?), hence in $L[z]$ we get

\[f(z) = (z - \xi)g(z) \]

By induction we can construct a splitting field E for g over L with $[E:L] \leq (n - 1)!$. Then E is a splitting field for f over K with $[E:K] = [E:L][L:K] \leq n!$.

If E' is another splitting field then we have an imbedding $\sigma : K \to E'$. This extends to an embedding $\tau : E \to F$ for some extension F of E'. But then $\tau(E) = E'$ since both are generated by the roots of f' in F, hence E and E'.
Example 18 Let $F = K(t_1, \ldots , t_n)$ be the field of rational functions in n variables, and consider the “general” polynomial

$$p(x) = (x - t_1) \ldots (x - t_n) = x^n - e_1x^{n-1} + e_2x^{n-2} - \cdots \pm e_n$$

where the e_i are the elementary symmetric functions:

$$e_1 = \sum_i t_i, \quad e_2 = \sum_{i<j} t_it_j, \ldots , \quad e_n = \prod_i t_i.$$

Then F is a splitting field of p over the subfield $E = K(e_1,e_2,\ldots,e_n)$. We claim that F/E is a Galois extension, with group S_n acting on F by permuting the t_i. Clearly $E \subset F^{S_n}$ and by the previous theorem $[F : E] \leq n! = [F : F^{S_n}]$. Therefore $E = F^{S_n}$.

2.1 Ruler and compass construction

Construction by ruler and compass means starting with $\mathbb{Q}^2 \subset \mathbb{R}^2$ and successively constructing new points by intersection of lines (passing through two previously constructed points) and circles (with previously constructed centers and radii). A real number will be called constructible if it is a coordinate of a constructible point.

Exercise 19 Let F be the subfield of \mathbb{R} containing coordinates of all constructed numbers up to some stage. Show that numbers constructed by one further such intersection satisfy a quadratic or linear equation over F.

Exercise 20 Deduce that the new numbers lie in an extension field of degree 1 or 2 over F.

Exercise 21 Show that each constructible number lies in a field E such that $[E : \mathbb{Q}] = 2^n$ for some n.

Exercise 22 Show that constructible numbers cannot have a minimum polynomial of degree 3.

Exercise 23 Deduce that it is impossible to construct $2^{1/3}$ (duplicating a cube) and $\cos(20^\circ)$ (trisecting 60°).
3 Normal extensions

Definition 24 A finite field extension E/K is normal if every field extension F/K has at most one subextension isomorphic to E/K.

Lemma 25 For any finite field extension E/K TFAE

1. Every irreducible K-polynomial with a root in E, splits in E.

2. E is the splitting field of some K-polynomial.

3. E/K is normal.

Proof. $1 \Rightarrow 2$ Choose a basis $\{\alpha_i\}$ for E/K; then the minimum polynomial p_i of each α_i splits in E, and E is the splitting field of Πp_i.

$2 \Rightarrow 3$ Suppose α_i are the roots of f and $E = K(\alpha_i)$ is the splitting field. Then the image of τ is $K(\beta_i)$ where $\beta_i = \tau(\alpha_i)$. But $(x - \beta_i)$ are the factors of $\sigma(f)$ Therefore the set $\{\beta_i\}$ is indep. of τ.

$3 \Rightarrow 1$ Suppose f is an irreducible K-poly with root α in E, and let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be its roots in a splitting field L. Then for each i, $\alpha \mapsto \alpha_i$ defines an imbedding of $K(\alpha)$ into L which extends to $\tau_i : E \to F$ for some extension F of L. Now all have a common image E' which contains all α_i. Therefore f splits in E' and hence in E. □

Suppose E/K is a finite extension with generators a_1, \ldots, a_n, and F is the splitting field of $p_1 \ldots p_n$ where p_i is the minimum polynomial of a_i. Then F/K is normal and is moreover contained in any normal extension containing E/K. Therefore F is independent of the choice of the generators, and is called the normal closure of E/K.

Note that if E/K is a normal subextension of F/K, then for any $g \in Aut_K(F)$, $g(E)$ being isomorphic to E must equal E. Hence E must be $Aut_K(F)$-invariant. Invariant subextensions of a Galois extension can be characterized in terms of normal subgroups as follows:

Lemma 26 Suppose F/K is a finite Galois extension with group G and E/K is a subextension. TFAE

1. E is G-invariant.

2. $E = F^H$ for a normal subgroup H

Moreover in this case E/K is Galois with group G/H.

Proof. $2 \Rightarrow 1$ is easy. For $1 \Rightarrow 2$, note that by restriction we get a morphism $G \to Aut_K(E)$, whose kernel is a normal subgroup H of G. Clearly F^H contains E, and it is enough to prove $[F : F^H] = [F : E]$. Since $[F : F^H] = [H]$ and $[F : K] = |G|$ it suffices to prove that $[E : K] = |G|/|H| = |G/H|$. But we have an injection $G/H \to Aut_K(E)$ with $E^{G/H} = E^G = K$ and so the result follows.

The argument just given also proves E/K is Galois with group G/H. □
4 Separable extensions

A polynomial is said to be separable if it has distinct roots in its splitting field. We have

Lemma 27 Suppose \(f \in K[x] \) TFAE

1. \(f \) is separable.
2. \(f \) and its derivative \(f' \) have no common roots in \(E \).
3. \(f \) and \(f' \) are relatively prime in \(K[x] \).

Corollary 28 Suppose \(f \in K[x] \) is irreducible with degree \(\geq 2 \).

1. \(f \) is separable iff \(f' \neq 0 \).
2. If \(\text{char}(K) = 0 \) then \(f \) is separable.
3. If \(\text{char}(K) = p \) then \(f \) is separable unless it is a polynomial in \(x^p \).

We leave the proofs as easy exercises.

If \(E/K \) is a field extension an element in \(E \) is said to be separable if its minimum polynomial is separable; if every element is separable we say that \(E/K \) is separable.

Lemma 29 Suppose \(E/K, F/L \) are extensions with \(E/K \) finite and \(\sigma : K \rightarrow L \) is an imbedding

\[
\# \{ \tau : E \rightarrow F \mid \tau|K = \rho \} \leq [E : K].
\]

If \(F/L \) is normal, then equality holds iff \(E/K \) is separable.

Proof. To prove the lemma, we may as well assume that \(F/L \) is normal.

First suppose \(E = K(\alpha) \) for some \(\alpha \), and let \(p \) be the minimum polynomial of \(\alpha \). Since we have at least one imbedding \(E \rightarrow F \), \(p^\sigma \) has a root in \(F \) (the image of \(\alpha \)). Since \(F/L \) is normal \(p^\sigma \) splits as \(\prod (x - \beta_i) \) say, and \(\tau_i : \alpha \rightarrow \beta_i \) defines all possible extensions of \(\sigma \). The number of such extensions is \(\leq \deg(p) = [K(\alpha) : K] \) with equality iff the \(\beta_i \) are distinct, i.e. \(\alpha \) is separable.

For the case of general \(E \), we first extend \(\sigma \) to some \(K(\alpha) \subset E \) and then argue by induction on \([E : K] \).

5 Main results of Galois Theory

We can now give a different characterization of Galois extensions:

Theorem 30 A finite extension \(F/K \) is Galois iff it is normal and separable.
Proof. Note that $\text{Aut}_K(F)$ consists precisely of the imbeddings $F \to F$ which extend the identity on K. Hence if F/K is normal and separable we get $|\text{Aut}_K(F)| = [F : K]$ whence F/K is Galois by an earlier Corollary.

Conversely, suppose F/K is Galois and $\tau : F/K \to E/L$ is an imbedding. Then $\{\tau \sigma : \sigma \in \text{Aut}_K(F)\}$ gives $|\text{Aut}_K(F)| = [F : K]$ different imbeddings. These must then be all possible imbeddings, and in particular they all have a fixed image. This implies both normality and separability of E/K. ■

Corollary 31 If F/K is Galois and $F \supset E \supset K$, then F/E is Galois.

Proof. For separability we note that for α in F, its minimum polynomial over E divides its minimum polynomial over K. Hence if the latter has distinct roots, so does the former. For normality, we note that by the theorem F is the splitting field of some f over K. Then it is also the splitting of f over E. ■

The following result is the “main theorem” of Galois theory:

Theorem 32 Suppose F/K is a finite Galois extension with group G. Then the maps ϕ, γ are mutually inverse bijections between subgroups of G and intermediate subfields of F/K.

Proof. Let \mathcal{A}_G be the set of subgroups of G and let \mathcal{F}_F be the set of fields between F and K. Clearly we have $\phi : \mathcal{A}_G \to \mathcal{F}_F$ and $\gamma : \mathcal{F}_F \to \mathcal{A}_G$, and by Theorem ... we have $\gamma \phi = 1$; therefore it suffices to prove that ϕ is surjective. However if $E \in \mathcal{F}_F$, by the previous corollary F/E is Galois and so by Corollary ... $E = F^H$ for some subgroup of G. ■

6 Cyclic extensions

Lemma 33 A finite multiplicative subgroup of a field is cyclic.

Proof. The group is finite, abelian, and hence a direct sum of finite cyclic groups $Z_{d_1} \oplus Z_{d_2} \oplus \cdots \oplus Z_{d_k}$ where we can arrange to have $d_i | d_{i+1}$. This means all orders divide d_k and so every element of the group satisfies $x^{d_k} = 1$. But this equation has at most d_k solutions in any field, hence the group must reduce to Z_{d_k}. ■

Thus in any field, the nth roots of 1 form a cyclic multiplicative group $W_n(K)$ of order $\leq n$.

Definition 34 An extension F/K is called cyclic if it is Galois with $\text{Aut}_K(F)$ cyclic.

We can give a characterization of cyclic extensions assuming that K contains all nth roots of 1.

Theorem 35 Suppose $|W_n(K)| = n$. Then F/K is cyclic of degree n iff $F = K(\theta)$ with $\theta^n \in K$ but no smaller power belongs to K.

8
Proof. Suppose $F = K(\theta)$ as above, then we claim that the polynomial

$$f(x) = x^n - \theta^n = \prod_{\omega \in W_n} (x - \theta \omega)$$

is irreducible over K. (Else the constant term of a divisor of degree d would show $\theta^d \in K$ for $d < n$.) Therefore we have $F \approx K[x]/(f)$. Now W_n acts on F by $x \mapsto \omega x$ and $K = F^{W_n}$. Therefore the result follows from the Corollary.

Conversely suppose F/K is cyclic of order n. Then $K = F^G$ where $G = \text{Aut}_K(F)$ is cyclic of order n. We fix an isomorphism $\varepsilon : G \to W_n \subset K^\times$ and consider the linear combination $\sum_{g \in G} \varepsilon (g)^{-1} g$. By the F-independence of $G \subset \text{Map}(F, F)$ (Lemma 3), we can choose α in F such that

$$0 \neq \sum_{g \in G} \varepsilon (g)^{-1} g(\alpha) = \theta \text{ say.}$$

Then for all $g \in G$ we get

$$g(\theta) = \sum_{h \in G} \varepsilon (h)^{-1} gh(\alpha) = \varepsilon (g) \left(\sum_{h \in G} \varepsilon (gh)^{-1} gh(\alpha) \right) = \varepsilon (g) \theta$$

It follows that θ^n is G-fixed but no smaller power is G-fixed. Since F/K is Galois we have $K = F^G$, so θ^n belongs to K but no smaller power does. □

The necessity of the condition $[W_n(K)] = n$ is seen in the following exercise:

Exercise 36 Let $\omega = e^{2\pi i/5}$ be the primitive root 5th of 1 in \mathbb{C}. ω is a root of the irreducible polynomial $x^4 + x^3 + x^2 + x + 1$. Show that $\mathbb{Q}(\omega)/\mathbb{Q}$ is cyclic of order 4, but is not generated by the 4th root of a rational number.

7 Constructible extensions

Definition 37 A finite extension E/K is called a radical extension if $E = K(\alpha)$ with $\alpha^n \in K$ for some n.

Definition 38 A finite extension E/K is said to be constructible (by radicals) if it possesses a radical filtration $K = E_0 \subset \cdots \subset E_m = E$ where each E_{i+1}/E_i is a radical extension.

We need the following result in characteristic 0:

Lemma 39 In characteristic 0 the normal closure of a constructible extension is constructible.

Proof. Let E/K be a finite extension and F/K its normal closure. Since separability is automatic in characteristic 0, F/K is Galois. Let F_1 be the subfield generated by $g(E)$ for $g \in G$. Then F_1 is G-invariant, therefore F_1/K is Galois and it follows that $F = F_1$.

9
Now suppose E/K is constructible with E_i as in the definition, and $E_{i+1} = E_i(\theta_i)$ with $\theta_i^{n_i} \in E_i$. Then by the previous discussion, F is generated by
\[\{ g_j(\theta_i) : g_j \in G, 1 \leq i \leq m \}, \] i.e. we have
\[F = K(g_1(\theta_1), \ldots, g_1(\theta_m), g_2(\theta_1), \ldots, g_2(\theta_m), \ldots) \]
Since $g_j(\theta_i)^{n_j} = g_j(\theta_i^{n_j}) \in g(E_i)$, we see that F possesses a radical filtration.

In any characteristic, constructible Galois extensions F/K can be characterized as follows:

Theorem 40 Suppose F/K is Galois of degree dividing n and $|W_n(K)| = n$. Then F/K is constructible iff $\text{Aut}_K(F)$ is solvable.

Proof. If F/K is constructible, the first filtration step gives a radical extension $K(\theta)$ whose degree divides n. Then $\theta^n \in K$, and so for any g in $G = \text{Aut}_K(F)$ we have
\[(g(\theta)\theta^{-1})^n = g(\theta^n)\theta^{-n} = \theta^n\theta^{-n} = 1 \]
So $g(\theta)\theta^{-1}$ belongs to $W_n(K) \subset K$. Therefore $g(\theta)$ belongs to $E = K(\theta)$ and hence E is G-invariant. Therefore $E = F^H$ for some normal subgroup H. Now H is the Galois group of the constructible extension F/E and hence solvable by induction on degree. Also G/H is the Galois group of $K(\theta)/K$ and hence cyclic since K contains a primitive kth root. Therefore G is solvable.

Conversely if G is solvable then there is a chain of subgroups $G = G_0 > G_1 > \cdots > G_m = 1$ such that each G_i is normal in G_{i-1} and G_{i-1}/G_i is cyclic. Writing $F_i = F^{G_i}$ we get a chain of intermediate fields $K = F_0 < F_1 < \cdots < F_m = F$ such that F_{i-1}/F_i is a cyclic extension with group G_{i-1}/G_i. Then each F_{i-1}/F_i is radical and F/K is constructible.

8 Solvability by radicals

In this section we assume that all fields under discussion have characteristic 0. Then the splitting field for F any polynomial $f \in K[x]$ is automatically a Galois extension of K, and we call $\text{Aut}_K(F)$ the Galois group of f.

We need a brief discussion of roots of unity

Definition 41 The splitting field of $x^n - 1 \in K[x]$ is called the cyclotomic extension $C_n = C_n(K)$ of order n over K.

Note that since $x^n - 1$ and its derivative nx^{n-1} are relatively prime, $x^n - 1$ has n distinct roots in C_n and therefore $|W_n(C_n)| = n$. Any generator ω of $W_n(C_n)$ is called a primitive nth root of 1.

Lemma 42 For $\text{char}(K) = 0$, C_n/K is a radical Galois extension with abelian Galois group.
Proof. Clearly $C_n = K(\omega)$ where ω is primitive root, hence it is radical. Also since C_n/K is normal (splitting field) and separable (char. 0) it is Galois. Moreover $Aut_K(C)$ is completely determined by its action on ω, which must be of the form $\omega \mapsto \omega^d$ for some d relatively prime to n. Therefore $Aut_K(C)$ is isomorphic to a subgroup of the group of units of the ring \mathbb{Z}/n, and hence is abelian.

We also need to discuss how the Galois group of a splitting field changes under base extension.

Lemma 43 Suppose K'/K is an extension and F, F' are splitting fields for f over K, K'. Then $Aut_{K'}(F')$ is a subgroup of $Aut_K(F)$.

Proof. F, F' are generated over K, K' by the roots of f, and the Galois groups are determined by their action on these roots. Therefore we get a restriction map from $Aut_{K'}(F')$ to $Aut_K(F)$ which is easily seen to be an injection. ■

We say that f is solvable by radicals if F can be imbedded in a constructible extension of K. Galois’ big achievement is the following result:

Theorem 44 f is solvable by radicals iff its Galois group is a solvable group.

Proof. Let F/K be the splitting field of f. Then F/K is a Galois extension.

First suppose that $G = Aut_K(F)$ is solvable, unless K contains enough roots of 1 we cannot deduce that F/K is constructible. However let $n = [F: K]$ and let $C_n(K)$ and $C_n(F)$ be the cyclotomic extensions then $C_n(K)/C_n(F)$ is constructible because its Galois group is a subgroup of G and hence solvable. Thus the filtration $K \subset C_n(K) \subset C_n(F)$ can be refined to a radical filtration of $C_n(F)/K$. Since F/K imbeds in $C_n(F)/K$, f is solvable.

Conversely suppose F/K can be imbedded in a constructible extension E/K.

By the previous lemma we can assume E/K to be Galois but again unless K contains enough roots of 1 we cannot deduce that $Aut_K(E)$ is solvable. However if we pass further to the extension $C_n(E)/K$ where $n = [E: K]$, then we can deduce that $C_n(E)/C_n(K)$ is a Galois extension with solvable Galois group. Also note that $C_n(E)/K$ is still Galois (it splits $(x^n - 1)g(x)$ if E splits $g(x)$); moreover we have a filtration $K \subset C_n(K) \subset C_n(E)$. Since $C_n(K)/K$ is normal with abelian Galois group, we deduce that $C_n(E)/K$ has solvable Galois group. Since F/K is normal in $C_n(E)/K$ $Aut_K(F)$ is a quotient of $Aut_K(C_n(E))$, hence solvable since the latter is solvable. ■

Theorem 45 The general polynomial of degree n is not solvable by radicals for $n \geq 5$.

Proof. It suffices to show that S_n is not solvable for $n \geq 5$, but this contains A_5, which is simple. ■