
Math 351
Solutions to review problems for Final Exam December 16, 2007

#1 Find (78, 2340) and write it in the form 78a + 2340b where a and b are integers.

Solution:
2370 = 30(78) + 30 and so 30 = 2370− 30(78)

78 = 2(30) + 18 and so 18 = 78− 2(30)

30 = 18 + 12 and so 12 = 30− 18

18 = 12 + 6 and so 6 = 18− 12

12 = 2(6) + 0.

Thus (78, 2370) = 6. Furthemore

6 = 18− 12 = (18− (30− 18) = −30 + 2(18) =

−30 + 2(78− 2(30)) = 2(78)− 5(30) =

2(78)− 5(2370− 30(78)) = −5(2370 + 152(78).

#2 Find [12]−1 in Z25.

Solution: 25 = 2(12) + 1 so
1− (−2)(12) = 25

and hence
1 ≡ (−2)(12) mod(25).

Thus
[1] = [−2][12] inZ25.

Hence
[12]−1 = [−2] = [23] inZ12.

#3 Let R be a ring and A,B be ideals in R. Let A + B denote {a + b|a ∈ A, b ∈ B}
(a) Prove that A + B is an ideal in R.
(b) Recall that if n ∈ A, then (n) denotes {nk|k ∈ Z} = nZ. Prove that any ideal in

Z is equal to (n) for some n ∈ Z, n ≥ 0.
(c) Let m,n ∈ Z,m, n > 0. Prove that (m) + (n) = ((m,n)). (Recall that (m,n)

denotes the greatest common divisor of m and n.)

Solution:
(a) Let c1, c2 ∈ A + B and r ∈ R. Then c1 = a1 + b1 and c2 = a2 + b2 for some

a1, a2 ∈ A, b1, b2 ∈ B. Then c1− c2 = (a1 + b1)− (a2 + b2) = (a1− a2) + (b1− b2). Since A
and B are ideals (and hence subrings) a1− a2 ∈ A and b1− b2 ∈ B. Thus c1− c2 ∈ A+B.
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Also rc1 = r(a1 + b1) = ra1 + rb1. Since A and B are ideals, ra1 ∈ A and rb1 ∈ B. Thus
rc1 ∈ A + B. Similarly c1r = a1r + b1r ∈ A + B. Thus A + B is an ideal

(b) Let I be an ideal in Z. If I = {0} then I = (0) and we are done. If not, I contains
a nonzero integer and (since a ∈ I implies (−1)a ∈ I) I contains a positive integer. Thus
the set of positive integers in I is nonempty and so this set contains a smallest integer.
Let this smallest integer in I be n. Since n ∈ I we have (n) ⊆ I. Now let k ∈ I. Then
k = qn + r for some q, r ∈ Z with 0 ≤ r < n. But r = k − qn ∈ I, so, since n is the
smallest positive integer in I, we must have r = 0. Thus k = qn ∈ (n) so we have I ⊆ (n)
and hence I = (n).

(c) By part (a), (m) + (n) is an ideal and by part (b) we have (m) + (n) = (k) for
some positive integer k. We must show that k = (m,n). We know that (m,n) = am + bn
for some a, b ∈ Z and so (m,n) ∈ (m)+(n) = (k). Thus k|(m,n). But k ∈ (k) = (m)+(n)
and (m,n) divides both m and n, so (m,n)|k. Thus (m,n) = k as required.

#4 Find all the ideals in Z10 × Z. Which of these are prime ideals? Which of these are
maximal ideals?

Solution: Let R = Z10×Z. Note that R1 = Z10×(0) ⊆ Z10×Z and R2 = (0)×Z ⊆ Z10×Z
are ideals in R. Then if I is any ideal in R we have that I1 = R1 ∩ I and I2 = R2 ∩ I are
ideals in R. But if (a, b) ∈ I then (a, b) = (a, 0)+(0, b) = (a, b)(1, 0)+(a, b)(0, 1) ∈ I1 + I2.
Since I1 is isomorphic to an ideal in Z10 (hence to ([k]) where k = 0, 1, 2, 5) and I2 is
isomorphic to an ideal in Z (hence to (n) where n ∈ Z, n ≥ 0). Now (1, 0)(0, 1) = (0, 0)
in R and so the quotient of R by ([k])× (n) will have zero divisors unless k = 1 or n = 1.
Now Z/([k]) is an integral domain if and only if k = 2 or 5 and in this case it is a field.
Furthermore, Z/(n) is an integral domain if and if either n is prime (in which case it is a
field) or if n = 0 (in which case it is not a field). Thus the prime ideals are ([k]) × Z for
k = 2, 5, Z10×(p) for p prime, and Z10×(0). All of these except the last are also maximal.

#5 Find [x2 + x + 1]−1 in Q[x]/(x3 + 2).

Solution: x3 + 2 = (x− 1)(x2 + x + 1) + 3. Thus

1 = (
−1(x− 1)

3
)(x2 + x + 1) +

x3 + 2
3

and so

[1] = [
−1(x− 1)

3
][x2 + x + 1].

Thus [x2 + x + 1]−1 = [−1(x−1)
3 ].

#6 Find (x3 +2x2−x− 2, x4− 1) in Q[x] and exrpess it in the form (x3 +2x2−x− 2)a+
(x4 − 1)b where a, b ∈ Q[x].

Solution:
x4 − 1 = (x− 2)(x3 + 2x2 − x− 2) + 5(x2 − 1)

and so

x2 − 1 = (
−(x− 2)

5
)(x3 + 2x2 − x− 2) +

(x4 − 1)
5

,
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and
x3 + 2x2 − x− 2 = (x + 2)(x2 − 1).

Thus x2 − 1 = (x3 + 2x2 − x− 2, x4 − 1).

#7 (a) Let R = {A ∈ M2(R)|A
∣∣∣∣ 1
−1

∣∣∣∣ =
∣∣∣∣ 00
∣∣∣∣}. Show that A is a subring of M2(R) but

that A is not an ideal.

(b) Let S = {B ∈M2(R)|B
∣∣∣∣ 1
−1

∣∣∣∣ ∈ R
∣∣∣∣ 1
−1

∣∣∣∣}. Show that S is a subring of M2(R).

(c) Show that R is an ideal in S and that S/R is isomorphic to R.

Solution:
(a) Let A1, A2 ∈ R. Then

(A1 −A2)
∣∣∣∣ 1
−1

∣∣∣∣ = A1

∣∣∣∣ 1
−1

∣∣∣∣−A2

∣∣∣∣ 1
−1

∣∣∣∣ = ∣∣∣∣ 00
∣∣∣∣

and

(A1A2)
∣∣∣∣ 1
−1

∣∣∣∣ = A1(A2

∣∣∣∣ 1
−1

∣∣∣∣) = A1

∣∣∣∣ 00
∣∣∣∣ = ∣∣∣∣ 00

∣∣∣∣ .
Hence A1 −A2 ∈ R and A1A2 ∈ R, so R is a subring. However

∣∣∣∣ 1 1
1 1

∣∣∣∣ ∈ R but

∣∣∣∣ 1 1
1 1

∣∣∣∣ ∣∣∣∣ 1 0
0 −1

∣∣∣∣ = ∣∣∣∣ 1 −1
1 −1

∣∣∣∣ 6∈ R.

Thus R is not an ideal.

(b) Let B1, B2 ∈ S. Thus B1

∣∣∣∣ 1
−1

∣∣∣∣ = k1

∣∣∣∣ 1
−1

∣∣∣∣ and B2

∣∣∣∣ 1
−1

∣∣∣∣ = k2

∣∣∣∣ 1
−1

∣∣∣∣ for some

k1, k2 ∈ R. Then

(B1 −B2)
∣∣∣∣ 1
−1

∣∣∣∣ = B1

∣∣∣∣ 1
−1

∣∣∣∣−B2

∣∣∣∣ 1
−1

∣∣∣∣ = k1

∣∣∣∣ 1
−1

∣∣∣∣− k2

∣∣∣∣ 1
−1

∣∣∣∣ = (k1 − k2)
∣∣∣∣ 1
−1

∣∣∣∣
and

(B1B2)
∣∣∣∣ 1
−1

∣∣∣∣ = B1(B2

∣∣∣∣ 1
−1

∣∣∣∣) = B1(k2

∣∣∣∣ 1
−1

∣∣∣∣ = k2B1

∣∣∣∣ 1
−1

∣∣∣∣ = k1k2

∣∣∣∣ 1
−1

∣∣∣∣ .
Thus S is a subring.

(c) Let A ∈ R and B ∈ S with B

∣∣∣∣ 1
−1

∣∣∣∣ = k

∣∣∣∣ 1
−1

∣∣∣∣ . Then

(BA)
∣∣∣∣ 1
−1

∣∣∣∣ = B(A
∣∣∣∣ 1
−1

∣∣∣∣) = B(
∣∣∣∣ 00
∣∣∣∣) =

∣∣∣∣ 00
∣∣∣∣

and

(AB)
∣∣∣∣ 1
−1

∣∣∣∣ = A(B
∣∣∣∣ 1
−1

∣∣∣∣) = A(k
∣∣∣∣ 00
∣∣∣∣) = kA

∣∣∣∣ 1
−1

∣∣∣∣ = k

∣∣∣∣ 00
∣∣∣∣ = ∣∣∣∣ 00

∣∣∣∣ .
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Thus R is an ideal in S. Now define θ : S → R by B

∣∣∣∣ 1
−1

∣∣∣∣ = θ(B)
∣∣∣∣ 1
−1

∣∣∣∣ . It is easy to

check that θ is a surjective homomorphism with kernel R. Thus the First Isomorphism
Theorem gives that S/R is isomorphic to R.

#8 Let F be a field and I1 ⊆ I2 ⊆ I3 ⊆ ... be ideals of F [x]. Show that there is some k
such that Ik = Ik+1 = ....

Solution: Any ideal in F [x] is equal to (f(x)) where f(x) is either 0 or some monic
polynomial f(x). Thus we may find f1(x), f2(x), ... such that Ij = (fj(x)) for all j. Then
fj(x) ∈ (fj(x)) = Ij ⊆ Ij+1 = (fj+1(x)) and so fj(x) = qj(x)fj+1(x) for some polynomial
qj(x). If fj(x) 6= 0, this implies deg(fj(x)) ≥ deg(fj+1(x)) and so deg(fj(x)) ≥ deg(fj+l(x)
for all l ≥ 0.Consider S = {deg(fj(x))|fj(x) 6= 0, j ≥ 1}. If S = ∅ then every Ij = (0)
and so the result holds. If S is not empty it contains a minimal element, say deg(fk(x)).
We already know deg(fk(x)) ≥ deg(fk+l(x)) for all l ≥ 0, so the minimality of deg(fk(x))
implies deg(fk(x)) = deg(fk+l(x)) for all l ≥ 0. Since fk(x) ∈ (fk(x)) = Ik ⊆ Ik+l =
(fk+l(x)) we see that fk+l(x) divides fk(x). Since these are monic polynomials of the
same degree, they are equal. Thus fk(x) = fk+1(x) = ... and so Ik = Ik+1 = ...

#9 (a) Is x5 + 3x4 + 6x2 − 9x + 3 irreducible over Q? Why or why not?
(b) Is x5 + x4 + 1 irreducible over Z2? Why or why not?

Solution:
(a) A polynomial in Z[x] is irreducible over Q if and only if it is irreducible over Z.

The given polynomial is irreducible over Z by Eisenstein’s criterion (with p = 3).
(b) Note that the polynomial has no roots (since 0 and 1 are the only possibilities and

neither is a root). Since the polynomial is of degree five, it can be reducible only if it is the
product of an irreducible polynomial of degree 2 and an irreducible polynomial of degree 3.
Now there is only one irreducible polynomial of degree 2 in Z2[x], namely x2+x+1 (because
there are only 4 polynomials of degree 4 in Z2[x] and the other 3 all have roots). Thus if
x5 +x4 +1 is reducible we must have x5 +x4 +1 = (x3 +ax2 + bx+ c)(x2 +x+1) for some
a, b, c ∈ Z2. Writing out the product and comparing coefficients gives a = 0, b = c = 1.
Thus x5 + x4 + 1 = (x3 + x + 1)(x2 + x + 1) in Z2[x], so the polynomial is reducible.

#10 Let R be a ring and I be an ideal in R. Prove that every subring of R/I has the form
J/I where J is a subring of R which contains I. Also show that J is an ideal in R if and
only if J/I is an ideal in R/I.

Solution: Let A be a subring in R/I. Define Ā = {r ∈ R|r + I ∈ A}. Let a1, a2 ∈ Ā.
Then a1 + I, a2 + I ∈ A and so (a1 − a2) + I = (a1 + I)− (a2 + I) ∈ A and (a1a2) + I =
(a1 + I)(a2 + I) ∈ A. Thus a1 − a2, a1a2 ∈ Ā and so Ā is a subring of R. Now if b ∈ I
we have b + I = 0 + I = 0R/I ∈ A. Thus b ∈ Ā and so I ⊆ Ā. Then I is an ideal in
Ā and Ā/I = {a + I|a ∈ Ā} = A. Furthermore, if A is an ideal, a ∈ Ā and r ∈ R, then
ra+ I = (r + I)(a+ I) ∈ (R/I)A ⊆ A so ra ∈ Ā and ar + I = (a+ I)(r + I) ∈ A(R/I) ⊆ A
so ar ∈ Ā. Thus if A is an ideal in R/I then Ā is an ideal in R. Conversely, if Ā is
an ideal in R and if a + I ∈ A, r + I ∈ R/I then a ∈ Ā and so ra, ar ∈ Ā. Then
(r + I)(a + I) = ra + I ∈ A and (a + I)(r + I) = ar + I ∈ A so A is an ideal in R/I.
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#11 Let G be a group and N a normal subgroup of G. Prove that every subgroup of G/N
has the form H/N where H is a subgroup of G which contains N . Also show that H is a
normal subgroup of G if and only if H/N is a normal subgroup of G/N .

Solution: This is parallel to the solution of #10. Let K be a subgroup of G/N . Define
K̄ = {g ∈ G|gN ∈ K}. Let g1, g2 ∈ K̄. Then g1g2N = (g1N)(g2N) ∈ K and g−1

1 N =
(g1N)−1 ∈ K.Thus g1g2, g

−1
1 ∈ K̄ so K̄ is a subgroup of G. Now if h ∈ N we have

hN = N = eG/N ∈ K. Thus h ∈ K̄ and so N ⊆ K̄. Then N is a normal subgroup of K̄
and K̄/N = {gN |g ∈ K̄} = K. Furthermore, if K is a normal subgroup in G/N, h ∈ K̄
and g ∈ G, then ghg−1N = (gN)(hN)(gN)−1 ∈ K so ghg−1 ∈ K̄ Thus if K is a normal
subgroup of G/N then K̄ is a normal subgroup of G. Conversely, if K̄ is a normal subgroup
of G and if hN ∈ K, gN ∈ G/N then h ∈ K̄ and so ghg−1 ∈ K̄. Then (gN)(hN)(gN)−1 =
ghg−1N ∈ K so K is a normal subgroup of G/N .

#12 Let G and H be groups, N be a normal subgroup of G, and f be a homomorphism
from G to H.

(a) Let eG be the identity element of G, eH be the identity element of H, and let
g ∈ G. Show that f(eG) = eH and that f(g−1) = f(g)−1.

(b) Show that ker(f) is a normal subgroup of G.
(c) Show that f(G) is a subgroup of H.
(d) Give an example to show that f(N) does not have to be a normal subgroup of H.
(e) Show that if f is surjective then f(N) is a normal subgroup of f(G).

Solution:
(a) f(eG) = f(eGeG) = f(eG)f(eG) and so

eH = f(eG)(f(eG))−1 = f(eG)f(eG)(e(eG)−1 = f(eG).

Then eH = f(eG) = f(gg−1) = f(g)f(g−1) and so

f(g)−1 = f(g)−1eH = f(g)−1f(g)f(g)−1 = f(g)−1.

(b) Let g1, g2 ∈ ker(f) and h ∈ G. Then f(g1g2) = f(g1)f(g2) = eHeH = eH so
g1, g2 ∈ ker(f) and f(g−1

1 ) = f(g1)−1 = e−1
H = eH so g−1

1 ∈ ker(f). Hence ker(f) is a
subgroup of G. Also f(hg1h

−1) = f(h)f(g1)f(h)−1. Since g1 ∈ ker(f) this is equal to
f(h)eHf(h)−1 = f(h)f(h)−1 = eH . Thus hg1h

−1 ∈ ker(f) and so ker(f) is a normal
subgroup of G.

(c) Let u1, u2 ∈ f(G). Then u1 = f(g1) and u2 = f(g2) for some g1, g2 ∈ G. Then
u1u2 = f(g1)f(g2) = f(g1g2) ∈ f(G). Also u−1

1 = f(g1)−1 = f(g−1
1 ) ∈ f(G). Thus f(G) is

a sbugroup of H.
(d) Let G be a cyclic group of order 2 generated by an element a. Thus G = {eG, a}.

Let H = S3. Define f : G → H by f(a) = (12), f(eG) = eH = (1)(2)(3). Then f is
a homomorphism and f(G) = {(1)(2)(3), (12)}. Then f(G) is not normal in H, since
(13)(12)(13)−1 = (13)(12)(13) = (23) 6∈ f(G).

(e) We know (from part (c)) that f(N) is a subgroup of H. Let u ∈ f(N) and
h ∈ H. Then u = f(v) for some v ∈ N and (since f is surjective) h = f(g) for some
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g ∈ G. Then huh−1 = f(g)f(v)f(g)−1 = f(g)f(v)f(g−1) = f(gvg−1). Since N is normal
in G, gvg−1 ∈ N and so huh−1 ∈ f(N). Thus f(N) is normal in H.

#13 Write (137562)(234)(57) as a product of disjoint cycles.

Solution: (134)(276)

#14 (a) Find σ ∈ S8 such that σ(87654321) = (12345678).
(b) Find τ ∈ S8 such that τ(87654321)τ−1 = (12345678).

Solution:
(a) σ = (12345678)(87654321)−1 = (12345678)(12345678) = (1357)2468).
(b) τ(87654321)τ−1 = (τ(8)τ(7)...τ(1)) and so we may take

τ(8) = 1, τ(7) = 2, ..., τ(1) = 8.

Thus τ = (18)(27)(36)(45) satisfies the conditions. (There are 7 other possibilities for τ .)

#15 Let C(n) denote the cyclic group of order n.
(a) Show that C(5)× C(6) is isomorphic to C(30).
(b) Show that C(2)× C(8) is not isomorphic to C(8)

Solution:
(a) Let < a > and < b > be cyclic groups where a has order 5 and b has order 6.

Then < a > × < b >= {(ai, bj)|0 ≤ i < 5, 0 ≤ j < 6}. Suppose (a, b)k = (e, e). Since
(a, b)k = (ak, bk) we have ak = e and bk = e. Thus 5|k and 6|k. Hence 30 divides k and so
(a, b) has order 30. But | < a > × < b > | = 30 so < a > × < b >=< (a, b) > is cyclic of
order 30.

(b) C(2)× C(8) has order 16 while C(8) has order 8, so they cannot be isomorphic.

#16 (a) Can S10 contain an element of order 14? Why or why not?
(b) Can S10 contain an element of order 16? Why or why not?

Solution:
(a) Yes. (1234567)(89) is such an element.
(b) No. Suppose σ ∈ S10 has order 16. Since σ a product of disjoint cycles, since a

cycle of length k has order k, and since disjoint cycles commute, we see that the length of
any cycle occuring in the expression for σ must be a divisor of 16, hence must be 1, 2, 4 or
8. But then σ8 is the identity, so the order of σ is a divisor of 8.

#17 Let G be a group, H be a subgroup of G, ad a, b ∈ G.
(a) Show that either Ha = Hb or Ha ∩Hb = ∅.
(b) Show that |Ha| = |Hb|.
(c) Suppose |G| is finite. Prove that |H| divides |G|.

Solution:
(a) Suppose c ∈ Ha ∩ Hb. Then c = h1a = h2b for some h1, h2 ∈ H. Hence a =

h−1
1 h1a = h−1

1 h2b and so ab−1 = h−1
1 h2bb

−1 = h−1
1 h2 ∈ H. Also ba−1 = (ab−1)−1 ∈ H.
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Then if u ∈ Ha we have u = ka for some k ∈ H and so u = kab−1b. But kab−1 ∈ H and so
u ∈ Hb. Thus Ha ⊆ Hb. Similarly, if v ∈ Hb then v = lb for some l ∈ H and v = lba−1a.
Since lba−1 ∈ H we have v ∈ Ha and so Hb ⊆ Ha. Thus Ha = Hb.

(b) Define f : Ha→ Hb and g : Hb→ Ha by f(u) = ua−1b and g(v) = vb−1a. Then
f and g are inverse mappings, so both are one-to-one and onto. Therefore |Ha| = |Hb|.

(c) In view of (a) G is the union of the distinct right coset of H. The number of
distinct right cosets of H in G is usually denoted [G : H]. Since these all contain |H|
elements, we have |G| = [G : H]|H|.

#18 (a) Let R = Z[
√

7]. Show that the quotient field of R is isomorphic to Q[
√

7].
(b) Prove that Q[

√
7] is a Euclidean domain with δ(a + b

√
7) = a2 + 7b2.

Solution:
(a) Let 0 6= u = a+ b

√
7 ∈ Q[

√
7]. Then u(a− b

√
7) = a2−7b2. Since

√
7 is irrational,

this is 6= 0. Thus u((a− b
√

7)(a2− 7b2)−1 = 1. Hence every nonzero element of Q[
√

7] has
an inverse and so Q[

√
7] is a field.

Now let Z[
√

7] ⊆ F ⊆ Q[
√

7] where F is a field. Then
√

7 ∈ F . Furthermore, Z ⊆ F
and since F is a field, this means Q ⊆ F. Thus F = Q[

√
7]. Since any field containing

Z[
√

7] contains subfield isomorphic to the quotient field, Q[
√

7] must be isomorphic to the
quotient field.

(b) Since Q[
√

7] is a field, it is a Euclidean domain for any function δ, in particular
for the given function.

#19 Let G be a group and H,K be subgroups of G. Assume HK = KH.
(a) Show that HK is a subgroup of G.
(b) Is H a normal subgroup of HK? (Think about subgroups of S3.)
(c) Suppose H ∩ K = {e} and hk = kh for all h ∈ H, k ∈ K. Prove that HK is

isomorphic to H ×K.

Solution:
(a) Let u1, u2 ∈ HK. Then u1 = h1k1, u2 = h2k2 for some h1, h2 ∈ H, k1, k2 ∈ K.

Then u1u2 = (h1k1)(h2k2) = h1(k1h2)k2. Since HK = KH there are some h3 ∈ H, k3 ∈ K
so that k1h2 = h3k3. Then u1u2 = h1(k1h2)k2 = h1(h3k3)k2 = (h1h3)(k3k2) ∈ HK. Also
u−1

1 = (h1k1)−1 = k−1
1 h−1 ∈ KH = HK. Thus HK is a subgroup of G.

(b) H is not necessarily normal in HK. For example if H = {id, (12)} ⊆ S3 and
K = {id, (123), (132)} ⊆ S3 then HK = KH = S3 but we know that H is not a normal
subgroup of S3 (for (13)(12)(13) = (23) 6∈ H).

(c) Define f : H×K → HK by f((h, k)) = hk. Then for (h1, k1), (h2, k2) ∈ H×K we
have f(((h1, k1)(h2, k2)) = f((h1h2, k1k2)) = h1h2k1k2. Now by our assumption we have
h2k1 = k1h2 so f((h1, k1)(h2, k2)) = h1h2k1k2 = h1k1h2k2 = f((h1, k1))f((h2, k2)). Thus
f is a homomorphism. Now any element in HK has the form hk for some h ∈ H, k ∈ K.
But hk = f((h, k)). Thus f is onto. Also, if (h, k) ∈ ker(f) then e = f((h, k)) = hk so
h = k−1 ∈ H ∩K = {e}. Thus ker(f) = {(e, e)} so f is one-to-one.

#20 Let K = {f ∈ C[x]|f(−2) = 0} and L = {g ∈ C[x]|g(−2) = g(5) = 0}.
(a) Show that K and L are ideals in C[x].
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(b) What is the quotient C[x]/K?
(c) What is the quotient C[x]/L?

Solution: Let θ : C[x]→ C be defined by θ(h(x)) = h(−2). Then θ is a homomorphicm
and is surjective (since the constant polynomial c maps to the complex number c). The
kernel of θ is K. Similarly, define τ : C[x] → C × C by τ(h(x)) = (τ(−2), τ(5)). Then
τ is a homomorphism and is surjective (since the polynomial −a7 (x − 5) + b

7 (x + 2) maps
to the pair (a, b). The kernel of τ is L. Now (a) follows since K and L are kernels of
homomorphisms. By applying the First Isomorphism Theorem to θ we see that C[x]/K is
isomorphic to C and by applying the First Isomorphism Theorem to τ we see that C[x]/L
is isomorphic to C×C.
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