Math 351
Solutions to review problems for Final Exam December 16, 2007

#1 Find (78,2340) and write it in the form 78a + 2340b where a and b are integers.

Solution:
2370 = 30(78) + 30 and so 30 = 2370 — 30(78)

78 = 2(30) + 18 and so 18 = 78 — 2(30)
30 =18+ 12 and so 12 = 30 — 18
18 =1246 and so 6 =18 — 12
12 = 2(6) + 0.
Thus (78,2370) = 6. Furthemore

6 =18 — 12 = (18 — (30 — 18) = —30 + 2(18) =
30 4 2(78 — 2(30)) = 2(78) — 5(30) =
2(78) — 5(2370 — 30(78)) = —5(2370 + 152(78).
#2 Find [12]71 in Zsos.

Solution: 25 =2(12) + 1 so
1—(-2)(12) =25

and hence
1 = (—2)(12) mod(25).
Thus
[1] = [2][12] inZos.
Hence

[12] 7 = [-2] = [23] inZ1a.

#3 Let R be a ring and A, B be ideals in R. Let A+ B denote {a + bla € A,b € B}

(a) Prove that A+ B is an ideal in R.

(b) Recall that if n € A, then (n) denotes {nk|k € Z} = nZ. Prove that any ideal in
Z is equal to (n) for some n € Z,n > 0.

(c) Let m,n € Z,m,n > 0. Prove that (m) + (n) = ((m,n)). (Recall that (m,n)
denotes the greatest common divisor of m and n.)

Solution:

(a) Let ¢1,c0 € A+ B and r € R. Then ¢; = a1 + by and c3 = ag + by for some
aj,az € A,by,by € B. Then ¢y —co = (a1 +b1) — (a2 +b2) = (a1 — az) + (by — ba). Since A
and B are ideals (and hence subrings) a1 —as € A and by —by € B. Thus ¢; —co € A+ B.
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Also rey = r(a; +b1) = ray + rby. Since A and B are ideals, ra; € A and rb; € B. Thus
rcy € A+ B. Similarly ¢yr = a1r + bir € A+ B. Thus A + B is an ideal

(b) Let I be an ideal in Z. If I = {0} then I = (0) and we are done. If not, I contains
a nonzero integer and (since a € [ implies (—1)a € I) I contains a positive integer. Thus
the set of positive integers in I is nonempty and so this set contains a smallest integer.
Let this smallest integer in I be n. Since n € I we have (n) C I. Now let £ € I. Then
k = gn + r for some ¢q,r € Z with 0 < r < n. But r = k —gn € I, so, since n is the
smallest positive integer in I, we must have r = 0. Thus k = gn € (n) so we have I C (n)
and hence I = (n).

(c) By part (a), (m) 4+ (n) is an ideal and by part (b) we have (m) + (n) = (k) for
some positive integer k. We must show that k = (m,n). We know that (m,n) = am + bn
for some a,b € Z and so (m,n) € (m)+ (n) = (k). Thus k|(m,n). But k € (k) = (m)+ (n)
and (m,n) divides both m and n, so (m,n)|k. Thus (m,n) = k as required.

#4 Find all the ideals in Z1¢ x Z. Which of these are prime ideals? Which of these are
maximal ideals?

Solution: Let R = ZlO x 7. Note that R1 = Z10 X (O) - Z10 x 7 and R2 = (0) xZ C Z10 X Z
are ideals in R. Then if [ is any ideal in R we have that Iy = Ry NI and I, = Ry, NI are
ideals in R. But if (a,b) € I then (a,b) = (a,0)+(0,b) = (a,b)(1,0)+ (a,b)(0,1) € I + I5.
Since I is isomorphic to an ideal in Zjo (hence to ([k]) where k = 0,1,2,5) and I is
isomorphic to an ideal in Z (hence to (n) where n € Z,n > 0). Now (1,0)(0,1) = (0,0)
in R and so the quotient of R by ([k]) x (n) will have zero divisors unless k =1 or n = 1.
Now Z/([k]) is an integral domain if and only if £ = 2 or 5 and in this case it is a field.
Furthermore, Z/(n) is an integral domain if and if either n is prime (in which case it is a
field) or if n = 0 (in which case it is not a field). Thus the prime ideals are ([k]) x Z for
k =2,5,Z19 x (p) for p prime, and Z1o x (0). All of these except the last are also maximal.

#5 Find [2% + z + 1]~ in Q[z]/(2® + 2).
Solution: 2% +2 = (z — 1)(2? + x + 1) + 3. Thus
~1(z —1) 3+ 2

1= ( 3 )(2® + x4+ 1)+ 3
and so . )
1] = [#_)][xz +x+1].

Thus [22 + 2+ 1]7! = [%]

#6 Find (23 +22% — 2 —2,2% — 1) in Q[z] and exrpess it in the form (23 + 222 —x — 2)a +
(z* — 1)b where a,b € Qz].

Solution:
t —1=(r—2)(2® + 22> — 2 —2) +5(2% - 1)

and so
—(z —2)

5

(z* - 1)

2
—1=
T ( =

V(a3 4222 — 2 — 2) +



and
234227 — 2 —2=(x+2)(z* - 1).

Thus 22 — 1 = (23 + 222 — 2 — 2,2% — 1).

1

#7 (a) Let R = {A € Mg(R)’A‘_l

that A is not an ideal.
(b) Let S ={B € My(R)|B 1 ’ € R‘ _11 '} Show that S is a subring of M (R).
(c) Show that R is an ideal in S and that S/R is isomorphic to R.

' = '8‘} Show that A is a subring of Ms(R) but

1

Solution:
(a) Let A1, A2 € R. Then

1 1 1 0
(A1 — Az) _1’—141 _1‘—142 _1‘—‘0’
and
1 1 0 0
et 8 =] =[] =9
Hence A1 — A3 € R and A1 As € R, so R is a subring. However 1 1 € R but
1 1|1 O 1 -1
1alle Al=f Tfee
Thus R is not an ideal.
(b) Let By,By; € S. Thus B _11‘ =k _11 and By _11‘ = ko _11’ for some
k’l,kQER. Then
1 1 1 1 1 1
(Bl—BQ) _1‘231 _1’—32 _l‘zkl _1'—k2 _1‘:(161—]{2) _1‘
and
1 1 1 1 1
(BlBg) _1’281(32 _1‘)231(]{52 _1’:]6231 _1‘:]€1k2 _1‘
Thus S is a subring.
(C)LetAERandBESWithB’_ll‘:k‘_ll'.Then
1 1 0 0
| 4= o] 4 === [
and
1 1 0 1 0 0
)| 4 = acs| & = ate gy = ea] 4 = 5[ = 3]
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Thus R is an ideal in S. Now define § : S — R by B ‘ 1= 0(B) _11

check that 6 is a surjective homomorphism with kernel R. Thus the First Isomorphism
Theorem gives that S/R is isomorphic to R.

. It is easy to

#8 Let F be a field and I; C I, C I3 C ... be ideals of F[x]. Show that there is some k
such that I, = Ix41 = ....

Solution: Any ideal in F[z]| is equal to (f(x)) where f(x) is either 0 or some monic
polynomial f(x). Thus we may find fi(x), f2(x), ... such that I; = (f;(x)) for all j. Then
fi(z) e (fi(x)=1; CILit1 = (fj+1(z)) and so fj(x) = gj(x)fj+1(x) for some polynomial
g;(x). If f;(z) # 0, this implies deg(f;(x)) > deg(fj+1(z)) and so deg(f;(x)) > deg(fj+i(x)
for all [ > 0.Consider S = {deg(f;(x))|f;(z) # 0,7 > 1}. If S = 0 then every I; = (0)
and so the result holds. If S is not empty it contains a minimal element, say deg(fi(z)).
We already know deg(fi(x)) > deg(fr+i(x)) for all [ > 0, so the minimality of deg(fi(z))
implies deg(fx(z)) = deg(fr+i(x)) for all I > 0. Since fi(x) € (fx(x)) = Iy C Iy =
(fr+i1(x)) we see that fryi(z) divides fx(xz). Since these are monic polynomials of the
same degree, they are equal. Thus fx(z) = frr1(z) = ... and so I, = Ix41 = ...

#9 (a) Is 25 + 32* + 622 — 92 + 3 irreducible over Q? Why or why not?
(b) Is 2° + 2 + 1 irreducible over Zy? Why or why not?

Solution:

(a) A polynomial in Z[z] is irreducible over Q if and only if it is irreducible over Z.
The given polynomial is irreducible over Z by Eisenstein’s criterion (with p = 3).

(b) Note that the polynomial has no roots (since 0 and 1 are the only possibilities and
neither is a root). Since the polynomial is of degree five, it can be reducible only if it is the
product of an irreducible polynomial of degree 2 and an irreducible polynomial of degree 3.
Now there is only one irreducible polynomial of degree 2 in Zs[z], namely 22 +x+1 (because
there are only 4 polynomials of degree 4 in Zs[z] and the other 3 all have roots). Thus if
2% + 2% +1 is reducible we must have 2° + 2% +1 = (23 +az? + bx +¢) (2% + 2 + 1) for some
a,b,c € Zs. Writing out the product and comparing coefficients gives a = 0,b = ¢ = 1.
Thus 2° + 2 + 1 = (23 + 2 + 1)(2® + x + 1) in Zy[z], so the polynomial is reducible.

#10 Let R be a ring and I be an ideal in R. Prove that every subring of R/I has the form
J/I where J is a subring of R which contains I. Also show that J is an ideal in R if and
only if J/I is an ideal in R/I.

Solution: Let A be a subring in R/I. Define A = {r € R|r +1 € A}. Let aj,as € A.
Then ay + I,as +1 € Aand so (a1 —ag)+1=(ay+1)— (ax+ 1) € A and (ara2) + 1 =
(a1 + I)(as +I) € A. Thus a; — as,aj1as € A and so A is a subring of R. Now if b € I
we have b+ 1 =0+ 1 =0g/; € A. Thus b € A and so I C A. Then I is an ideal in
A and A/I = {a+ I|la € A} = A. Furthermore, if A is an ideal, a € A and r € R, then
ra+I=r+1)(a+I)e (R/I)AC Asorac Aandar+1 = (a+1)(r+1)e€ A(R/I)C A
so ar € A. Thus if A is an ideal in R/I then A is an ideal in R. Conversely, if A is
an ideal in R and if a +1 € A,r +1 € R/I then a € A and so ra,ar € A. Then
(r+I)(a+1I)=ra+I€Aand (a+I)(r+I)=ar+1¢€ Aso Aisanidealin R/I.
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#11 Let G be a group and N a normal subgroup of G. Prove that every subgroup of G/N
has the form H/N where H is a subgroup of G which contains N. Also show that H is a
normal subgroup of G if and only if H/N is a normal subgroup of G/N.

Solution: This is parallel to the solution of #10. Let K be a subgroup of G/N. Define
K ={g € G|gN € K}. Let g1,92 € K. Then g1go2N = (g1N)(goN) € K and g]'N =
(g1N)~! € K.Thus glgg,gl_l € K so K is a subgroup of G. Now if h € N we have
hN = N =eg/y € K. Thus h € K and so N C K. Then N is a normal subgroup of IE’
and K/N = {gN|g € K} = K. Furthermore, if K is a normal subgroup in G/N,h € K
and g € G, then ghg !N = (gN)(hN)(gN)~! € K so ghg~* € K Thus if K is a normal
subgroup of G/N then K is a normal subgroup of G. Conversely, if K is a normal subgroup
of G and if AN € K,gN € G/N then h € K and so ghg~! € K. Then (gN)(hN)(gN)~! =
ghg™'N € K so K is a normal subgroup of G/N.

#12 Let G and H be groups, N be a normal subgroup of GG, and f be a homomorphism
from G to H.

(a) Let eg be the identity element of G, ey be the identity element of H, and let
g € G. Show that f(eg) = ey and that f(g~ 1) = f(g9)~ .

(b) Show that ker(f) is a normal subgroup of G.

(c) Show that f(G) is a subgroup of H.

(d) Give an example to show that f(N) does not have to be a normal subgroup of H.

(e) Show that if f is surjective then f(NN) is a normal subgroup of f(G).

Solution:

(a) fleq) = flecea) = flea)f(eq) and so
en = flea)(fea))™ = flea)f(ea)(e(ea) ™ = fleq).
Then ey = f(eq) = f(g9~") = f(g9)f(¢g") and so
flg) ™t = flo)ren = f9) " f(9)f(9) ™" = flo) ™"

(b) Let g1,92 € ker(f) and h € G. Then f(g192) = f(91)f(92) = emen = ey so
91,92 € ker(f) and f(g;") = f(q1)™" = ey’ = em so g;' € ker(f). Hence ker(f) is a
subgroup of G. Also f(hgih™t) = f(h)f(g1)f(h)~t. Since g1 € ker(f) this is equal to
f(hegf(h)™t = f(h)f(h)~' = ey. Thus hgih™! € ker(f) and so ker(f) is a normal
subgroup of G.

(c) Let uy,us € f(G). Then uy = f(91) and uy = f(g2) for some g1,g2 € G. Then
urz = F(1)(92) = Flor92) € F(G). Also u; = f(g1) 1 = f(g7) € F(G). Thus £(G) is
a sbugroup of H.

(d) Let G be a cyclic group of order 2 generated by an element a. Thus G = {eg, a}.
Let H = S3. Define f : G — H by f(a) = (12), f(eg) = ex = (1)(2)(3). Then f is
a homomorphism and f(G) = {(1)(2)(3),(12)}. Then f(G) is not normal in H, since
(13)(12)(13) ! = (13)(12)(13) = (23) £ £(G).

(e) We know (from part (c)) that f(N) is a subgroup of H. Let u € f(N) and
h € H. Then u = f(v) for some v € N and (since f is surjective) h = f(g) for some
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g€ G. Then huh' = f(g)f(v)f(9)"" = f(9)f(®)f(g~") = f(gog™"). Since N is normal
in G,gvg~! € N and so huh™! € f(N). Thus f(N) is normal in H.

#13 Write (137562)(234)(57) as a product of disjoint cycles.
Solution: (134)(276)

#14 (a) Find o € Sg such that 0(87654321) = (12345678).
(b) Find 7 € Sg such that 7(87654321)7 1 = (12345678).

Solution:
(a) o = (12345678)(87654321) " = (12345678)(12345678) = (1357)2468).
(b) 7(87654321)7~1 = (7(8)7(7)...7(1)) and so we may take

Thus 7 = (18)(27)(36)(45) satisfies the conditions. (There are 7 other possibilities for 7.)

#15 Let C(n) denote the cyclic group of order n.
(a) Show that C(5) x C(6) is isomorphic to C(30).
(b) Show that C'(2) x C(8) is not isomorphic to C(8)

Solution:

(a) Let < a > and < b > be cyclic groups where a has order 5 and b has order 6.
Then < a > x < b >= {(a’,1/)|0 < i < 5,0 < j < 6}. Suppose (a,b)* = (e,e). Since
(a,b)* = (a*,b*) we have a* = e and by, = e. Thus 5|k and 6|k. Hence 30 divides k and so
(a,b) has order 30. But | <a>x <b>|[=30s0 <a>x <b>=<(a,b) > is cyclic of
order 30.

(b) C(2) x C(8) has order 16 while C'(8) has order 8, so they cannot be isomorphic.

#16 (a) Can Sig contain an element of order 147 Why or why not?
(b) Can Syp contain an element of order 167 Why or why not?

Solution:

(a) Yes. (1234567)(89) is such an element.

(b) No. Suppose o € Sig has order 16. Since o a product of disjoint cycles, since a
cycle of length k£ has order k, and since disjoint cycles commute, we see that the length of
any cycle occuring in the expression for o must be a divisor of 16, hence must be 1,2,4 or
8. But then o8 is the identity, so the order of ¢ is a divisor of 8.

#17 Let G be a group, H be a subgroup of G, ad a,b € G.
(a) Show that either Ha = Hb or Ha N Hb = {).
(b) Show that |Ha| = |Hb|.
(c) Suppose |G| is finite. Prove that |H| divides |G|.

Solution:
(a) Suppose ¢ € Ha N Hb. Then ¢ = hya = hob for some hy,he € H. Hence a =
hi'hia = hi'hyb and so ab™' = hy ' habb™! = hi'hy € H. Also ba™' = (ab~!)~! € H.
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Then if u € Ha we have u = ka for some k € H and so u = kab~'b. But kab~! € H and so
w € Hb. Thus Ha C Hb. Similarly, if v € Hb then v = [b for some [ € H and v = lba™'a.
Since lba~! € H we have v € Ha and so Hb C Ha. Thus Ha = Hb.

(b) Define f : Ha — Hb and g : Hb — Ha by f(u) = ua™'b and g(v) = vb~1a. Then
f and g are inverse mappings, so both are one-to-one and onto. Therefore |Ha| = |Hb|.

(c¢) In view of (a) G is the union of the distinct right coset of H. The number of
distinct right cosets of H in G is usually denoted [G : H]. Since these all contain |H|
elements, we have |G| =[G : H||H]|.

#18 (a) Let R = Z[\/7]. Show that the quotient field of R is isomorphic to Q[v/7].
(b) Prove that Q[v/7] is a Euclidean domain with §(a + bv/7) = a? + 7b2.

Solution:

(a) Let 0 # u = a+by/7 € Q[V/7]. Then u(a—bv/7) = a® — 7b%. Since /7 is irrational,
this is # 0. Thus u((a —bv/7)(a? — 7b?)~! = 1. Hence every nonzero element of Q[v/7] has
an inverse and so Q[v/7] is a field.

Now let Z[\/ﬂ CFC Q[\/ﬂ where F is a field. Then /7 € F. Furthermore, Z C F
and since F is a field, this means Q C F. Thus F = Q[v/7]. Since any field containing
Z[\/7] contains subfield isomorphic to the quotient field, Q[v/7] must be isomorphic to the
quotient field.

(b) Since Q[v/7] is a field, it is a Euclidean domain for any function 4, in particular
for the given function.

#19 Let G be a group and H, K be subgroups of G. Assume HK = KH.

(a) Show that HK is a subgroup of G.

(b) Is H a normal subgroup of HK? (Think about subgroups of S3.)

(c) Suppose H N K = {e} and hk = kh for all h € H,k € K. Prove that HK is
isomorphic to H x K.

Solution:

(a) Let up,us € HK. Then u; = hiki,uy = hoky for some hy,hy € H, ki, ko € K.
Then ujus = (hlk’l)(hgkg) = hl(k‘lhg)kg. Since HK = K H there are some h3 € H, ks € K
so that klhg = hgk‘g. Then UrUg = hl(klhg)kg = hl(hgkg)kg = (h1h3)<k3k2) € HK. Also
u;t = (hk) ' =k{'h™' € KH = HK. Thus HK is a subgroup of G.

(b) H is not necessarily normal in HK. For example if H = {id, (12)} C S5 and
K = {id, (123),(132)} C S3 then HK = KH = S5 but we know that H is not a normal
subgroup of Ss (for (13)(12)(13) = (23) & H).

(c) Define f : Hx K — HK by f((h,k)) = hk. Then for (hq, k1), (he,k2) € H x K we
have f(((h1,k1)(ha,k2)) = f((h1ha, ki1ks)) = hihokike. Now by our assumption we have
hgkl = klhg SO f((hl,kl)(hz,kg)) = hlhgklkz = hlklhgkz = f((hl,kl))f((hg,kg)) Thus
f is a homomorphism. Now any element in H K has the form hk for some h € H, k € K.
But hk = f((h,k)). Thus f is onto. Also, if (h,k) € ker(f) then e = f((h,k)) = hk so
h=k=te HNK = {e}. Thus ker(f) = {(e,e)} so f is one-to-one.

#20 Let K = {f € Cla]|f(~2) = 0} and L = {g € Clz]lg(~2) = 4(5) = 0}.
(a) Show that K and L are ideals in C[x].
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(b) What is the quotient Clz|/K?
(c) What is the quotient Clx]/L?

Solution: Let 0 : C[z] — C be defined by 0(h(x)) = h(—2). Then 6 is a homomorphicm
and is surjective (since the constant polynomial ¢ maps to the complex number ¢). The
kernel of 6 is K. Similarly, define 7 : Clz] — C x C by 7(h(z)) = (7(—2),7(5)). Then
7 is a homomorphism and is surjective (since the polynomial =*(x —5) + g(a: + 2) maps
to the pair (a,b). The kernel of 7 is L. Now (a) follows since K and L are kernels of
homomorphisms. By applying the First Isomorphism Theorem to 6 we see that C[z]/K is
isomorphic to C and by applying the First Isomorphism Theorem to 7 we see that Clz|/L
is isomorphic to C x C.



