Math 351 Solutions to review problems for Final Exam December 16, 2007

#1 Find (78,2340) and write it in the form 78a + 2340b where a and b are integers.

Solution:

$$2370 = 30(78) + 30 \text{ and so } 30 = 2370 - 30(78)$$

$$78 = 2(30) + 18 \text{ and so } 18 = 78 - 2(30)$$

$$30 = 18 + 12 \text{ and so } 12 = 30 - 18$$

$$18 = 12 + 6 \text{ and so } 6 = 18 - 12$$

$$12 = 2(6) + 0.$$

Thus (78, 2370) = 6. Furthemore

$$6 = 18 - 12 = (18 - (30 - 18)) = -30 + 2(18) =$$
$$-30 + 2(78 - 2(30)) = 2(78) - 5(30) =$$
$$2(78) - 5(2370 - 30(78)) = -5(2370 + 152(78)).$$

#2 Find $[12]^{-1}$ in \mathbf{Z}_{25} .

Solution: 25 = 2(12) + 1 so

$$1 - (-2)(12) = 25$$

and hence

$$1 \equiv (-2)(12) \mod (25).$$

Thus

 $[1] = [-2][12] in \mathbf{Z}_{25}.$

Hence

$$[12]^{-1} = [-2] = [23] in \mathbf{Z}_{12}.$$

#3 Let R be a ring and A, B be ideals in R. Let A + B denote $\{a + b | a \in A, b \in B\}$

(a) Prove that A + B is an ideal in R.

(b) Recall that if $n \in \mathbf{A}$, then (n) denotes $\{nk | k \in \mathbf{Z}\} = n\mathbf{Z}$. Prove that any ideal in \mathbf{Z} is equal to (n) for some $n \in \mathbf{Z}, n \ge 0$.

(c) Let $m, n \in \mathbb{Z}, m, n > 0$. Prove that (m) + (n) = ((m, n)). (Recall that (m, n) denotes the greatest common divisor of m and n.)

Solution:

(a) Let $c_1, c_2 \in A + B$ and $r \in R$. Then $c_1 = a_1 + b_1$ and $c_2 = a_2 + b_2$ for some $a_1, a_2 \in A, b_1, b_2 \in B$. Then $c_1 - c_2 = (a_1 + b_1) - (a_2 + b_2) = (a_1 - a_2) + (b_1 - b_2)$. Since A and B are ideals (and hence subrings) $a_1 - a_2 \in A$ and $b_1 - b_2 \in B$. Thus $c_1 - c_2 \in A + B$.

Also $rc_1 = r(a_1 + b_1) = ra_1 + rb_1$. Since A and B are ideals, $ra_1 \in A$ and $rb_1 \in B$. Thus $rc_1 \in A + B$. Similarly $c_1r = a_1r + b_1r \in A + B$. Thus A + B is an ideal

(b) Let I be an ideal in \mathbb{Z} . If $I = \{0\}$ then I = (0) and we are done. If not, I contains a nonzero integer and (since $a \in I$ implies $(-1)a \in I$) I contains a positive integer. Thus the set of positive integers in I is nonempty and so this set contains a smallest integer. Let this smallest integer in I be n. Since $n \in I$ we have $(n) \subseteq I$. Now let $k \in I$. Then k = qn + r for some $q, r \in \mathbb{Z}$ with $0 \leq r < n$. But $r = k - qn \in I$, so, since n is the smallest positive integer in I, we must have r = 0. Thus $k = qn \in (n)$ so we have $I \subseteq (n)$ and hence I = (n).

(c) By part (a), (m) + (n) is an ideal and by part (b) we have (m) + (n) = (k) for some positive integer k. We must show that k = (m, n). We know that (m, n) = am + bnfor some $a, b \in \mathbb{Z}$ and so $(m, n) \in (m) + (n) = (k)$. Thus $k \mid (m, n)$. But $k \in (k) = (m) + (n)$ and (m, n) divides both m and n, so $(m, n) \mid k$. Thus (m, n) = k as required.

#4 Find all the ideals in $\mathbf{Z}_{10} \times \mathbf{Z}$. Which of these are prime ideals? Which of these are maximal ideals?

Solution: Let $R = \mathbf{Z}_{10} \times \mathbf{Z}$. Note that $R_1 = \mathbf{Z}_{10} \times (0) \subseteq \mathbf{Z}_{10} \times \mathbf{Z}$ and $R_2 = (0) \times \mathbf{Z} \subseteq \mathbf{Z}_{10} \times \mathbf{Z}$ are ideals in R. Then if I is any ideal in R we have that $I_1 = R_1 \cap I$ and $I_2 = R_2 \cap I$ are ideals in R. But if $(a, b) \in I$ then $(a, b) = (a, 0) + (0, b) = (a, b)(1, 0) + (a, b)(0, 1) \in I_1 + I_2$. Since I_1 is isomorphic to an ideal in \mathbf{Z}_{10} (hence to ([k]) where k = 0, 1, 2, 5) and I_2 is isomorphic to an ideal in \mathbf{Z} (hence to (n) where $n \in \mathbf{Z}, n \geq 0$). Now (1, 0)(0, 1) = (0, 0) in R and so the quotient of R by $([k]) \times (n)$ will have zero divisors unless k = 1 or n = 1. Now $\mathbf{Z}/([k])$ is an integral domain if and only if k = 2 or 5 and in this case it is a field. Furthermore, $\mathbf{Z}/(n)$ is an integral domain if and if either n is prime (in which case it is a field) or if n = 0 (in which case it is not a field). Thus the prime ideals are $([k]) \times \mathbf{Z}$ for $k = 2, 5, \mathbf{Z}_{10} \times (p)$ for p prime, and $\mathbf{Z}_{10} \times (0)$. All of these except the last are also maximal.

#5 Find $[x^2 + x + 1]^{-1}$ in $\mathbf{Q}[x]/(x^3 + 2)$.

Solution: $x^3 + 2 = (x - 1)(x^2 + x + 1) + 3$. Thus

$$1 = \left(\frac{-1(x-1)}{3}\right)(x^2 + x + 1) + \frac{x^3 + 2}{3}$$

and so

$$[1] = \left[\frac{-1(x-1)}{3}\right][x^2 + x + 1].$$

Thus $[x^2 + x + 1]^{-1} = \left[\frac{-1(x-1)}{3}\right].$

#6 Find $(x^3 + 2x^2 - x - 2, x^4 - 1)$ in $\mathbf{Q}[x]$ and express it in the form $(x^3 + 2x^2 - x - 2)a + (x^4 - 1)b$ where $a, b \in \mathbf{Q}[x]$.

Solution:

$$x^{4} - 1 = (x - 2)(x^{3} + 2x^{2} - x - 2) + 5(x^{2} - 1)$$

and so

$$x^{2} - 1 = \left(\frac{-(x-2)}{5}\right)(x^{3} + 2x^{2} - x - 2) + \frac{(x^{4} - 1)}{5},$$

and

$$x^{3} + 2x^{2} - x - 2 = (x + 2)(x^{2} - 1).$$

Thus $x^2 - 1 = (x^3 + 2x^2 - x - 2, x^4 - 1).$

#7 (a) Let $R = \{A \in M_2(\mathbf{R}) | A \begin{vmatrix} 1 \\ -1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix} \}$. Show that A is a subring of $M_2(\mathbf{R})$ but that A is not an ideal.

- (b) Let $S = \{B \in M_2(\mathbf{R}) | B \begin{vmatrix} 1 \\ -1 \end{vmatrix} \in \mathbf{R} \begin{vmatrix} 1 \\ -1 \end{vmatrix} \}$. Show that S is a subring of $M_2(\mathbf{R})$.
- (c) Show that R is an ideal in S and that S/R is isomorphic to **R**.

Solution:

(a) Let $A_1, A_2 \in \mathbb{R}$. Then

$$(A_1 - A_2) \begin{vmatrix} 1 \\ -1 \end{vmatrix} = A_1 \begin{vmatrix} 1 \\ -1 \end{vmatrix} - A_2 \begin{vmatrix} 1 \\ -1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$

and

$$(A_1A_2)\begin{vmatrix} 1\\ -1 \end{vmatrix} = A_1(A_2 \begin{vmatrix} 1\\ -1 \end{vmatrix}) = A_1 \begin{vmatrix} 0\\ 0 \end{vmatrix} = \begin{vmatrix} 0\\ 0 \end{vmatrix}.$$

Hence $A_1 - A_2 \in R$ and $A_1 A_2 \in R$, so R is a subring. However $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} \in R$ but

$$\begin{vmatrix} 1 & 1 \\ 1 & 1 \\ \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 1 & -1 \\ \end{vmatrix} \notin R.$$

Thus R is not an ideal.

(b) Let $B_1, B_2 \in S$. Thus $B_1 \begin{vmatrix} 1 \\ -1 \end{vmatrix} = k_1 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$ and $B_2 \begin{vmatrix} 1 \\ -1 \end{vmatrix} = k_2 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$ for some $k_1, k_2 \in \mathbf{R}$. Then

$$(B_1 - B_2) \begin{vmatrix} 1 \\ -1 \end{vmatrix} = B_1 \begin{vmatrix} 1 \\ -1 \end{vmatrix} - B_2 \begin{vmatrix} 1 \\ -1 \end{vmatrix} = k_1 \begin{vmatrix} 1 \\ -1 \end{vmatrix} - k_2 \begin{vmatrix} 1 \\ -1 \end{vmatrix} = (k_1 - k_2) \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

and

$$B_1B_2)\begin{vmatrix} 1\\-1 \end{vmatrix} = B_1(B_2\begin{vmatrix} 1\\-1 \end{vmatrix}) = B_1(k_2\begin{vmatrix} 1\\-1 \end{vmatrix} = k_2B_1\begin{vmatrix} 1\\-1 \end{vmatrix} = k_1k_2\begin{vmatrix} 1\\-1 \end{vmatrix}.$$

Thus S is a subring.

(

(c) Let
$$A \in R$$
 and $B \in S$ with $B \begin{vmatrix} 1 \\ -1 \end{vmatrix} = k \begin{vmatrix} 1 \\ -1 \end{vmatrix}$. Then

$$(BA) \begin{vmatrix} 1 \\ -1 \end{vmatrix} = B(A \begin{vmatrix} 1 \\ -1 \end{vmatrix}) = B(\begin{vmatrix} 0 \\ 0 \end{vmatrix}) = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$

and

$$(AB)\begin{vmatrix}1\\-1\end{vmatrix} = A(B\begin{vmatrix}1\\-1\end{vmatrix}) = A(k\begin{vmatrix}0\\0\end{vmatrix}) = kA\begin{vmatrix}1\\-1\end{vmatrix} = k\begin{vmatrix}0\\0\end{vmatrix} = \begin{vmatrix}0\\0\end{vmatrix}$$

Thus R is an ideal in S. Now define $\theta: S \to \mathbf{R}$ by $B \begin{vmatrix} 1 \\ -1 \end{vmatrix} = \theta(B) \begin{vmatrix} 1 \\ -1 \end{vmatrix}$. It is easy to check that θ is a surjective homomorphism with kernel R. Thus the First Isomorphism Theorem gives that S/R is isomorphic to \mathbf{R} .

#8 Let F be a field and $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$ be ideals of F[x]. Show that there is some k such that $I_k = I_{k+1} = ...$

Solution: Any ideal in F[x] is equal to (f(x)) where f(x) is either 0 or some monic polynomial f(x). Thus we may find $f_1(x), f_2(x), ...$ such that $I_j = (f_j(x))$ for all j. Then $f_j(x) \in (f_j(x)) = I_j \subseteq I_{j+1} = (f_{j+1}(x))$ and so $f_j(x) = q_j(x)f_{j+1}(x)$ for some polynomial $q_j(x)$. If $f_j(x) \neq 0$, this implies $deg(f_j(x)) \ge deg(f_{j+1}(x))$ and so $deg(f_j(x)) \ge deg(f_{j+l}(x))$ for all $l \ge 0$.Consider $S = \{deg(f_j(x)) | f_j(x) \neq 0, j \ge 1\}$. If $S = \emptyset$ then every $I_j = (0)$ and so the result holds. If S is not empty it contains a minimal element, say $deg(f_k(x))$. We already know $deg(f_k(x)) \ge deg(f_{k+l}(x))$ for all $l \ge 0$, so the minimality of $deg(f_k(x))$ implies $deg(f_k(x)) = deg(f_{k+l}(x))$ for all $l \ge 0$. Since $f_k(x) \in (f_k(x)) = I_k \subseteq I_{k+l} = (f_{k+l}(x))$ we see that $f_{k+l}(x)$ divides $f_k(x)$. Since these are monic polynomials of the same degree, they are equal. Thus $f_k(x) = f_{k+1}(x) = \dots$ and so $I_k = I_{k+1} = \dots$

#9 (a) Is $x^5 + 3x^4 + 6x^2 - 9x + 3$ irreducible over **Q**? Why or why not?

(b) Is $x^5 + x^4 + 1$ irreducible over \mathbb{Z}_2 ? Why or why not?

Solution:

(a) A polynomial in $\mathbf{Z}[x]$ is irreducible over \mathbf{Q} if and only if it is irreducible over \mathbf{Z} . The given polynomial is irreducible over \mathbf{Z} by Eisenstein's criterion (with p = 3).

(b) Note that the polynomial has no roots (since 0 and 1 are the only possibilities and neither is a root). Since the polynomial is of degree five, it can be reducible only if it is the product of an irreducible polynomial of degree 2 and an irreducible polynomial of degree 3. Now there is only one irreducible polynomial of degree 2 in $\mathbb{Z}_2[x]$, namely x^2+x+1 (because there are only 4 polynomials of degree 4 in $\mathbb{Z}_2[x]$ and the other 3 all have roots). Thus if $x^5 + x^4 + 1$ is reducible we must have $x^5 + x^4 + 1 = (x^3 + ax^2 + bx + c)(x^2 + x + 1)$ for some $a, b, c \in \mathbb{Z}_2$. Writing out the product and comparing coefficients gives a = 0, b = c = 1. Thus $x^5 + x^4 + 1 = (x^3 + x + 1)(x^2 + x + 1)$ in $\mathbb{Z}_2[x]$, so the polynomial is reducible.

#10 Let R be a ring and I be an ideal in R. Prove that every subring of R/I has the form J/I where J is a subring of R which contains I. Also show that J is an ideal in R if and only if J/I is an ideal in R/I.

Solution: Let A be a subring in R/I. Define $\overline{A} = \{r \in R | r + I \in A\}$. Let $a_1, a_2 \in \overline{A}$. Then $a_1 + I, a_2 + I \in A$ and so $(a_1 - a_2) + I = (a_1 + I) - (a_2 + I) \in A$ and $(a_1a_2) + I = (a_1 + I)(a_2 + I) \in A$. Thus $a_1 - a_2, a_1a_2 \in \overline{A}$ and so \overline{A} is a subring of R. Now if $b \in I$ we have $b + I = 0 + I = 0_{R/I} \in A$. Thus $b \in \overline{A}$ and so $I \subseteq \overline{A}$. Then I is an ideal in \overline{A} and $\overline{A}/I = \{a + I | a \in \overline{A}\} = A$. Furthermore, if A is an ideal, $a \in \overline{A}$ and $r \in R$, then $ra + I = (r + I)(a + I) \in (R/I)A \subseteq A$ so $ra \in \overline{A}$ and $ar + I = (a + I)(r + I) \in A(R/I) \subseteq A$ so $ar \in \overline{A}$. Thus if A is an ideal in R/I then \overline{A} is an ideal in R. Conversely, if \overline{A} is an ideal in R and if $a + I \in A, r + I \in R/I$ then $a \in \overline{A}$ and so $ra, ar \in \overline{A}$. Then $(r + I)(a + I) = ra + I \in A$ and $(a + I)(r + I) = ar + I \in A$ so A is an ideal in R/I. #11 Let G be a group and N a normal subgroup of G. Prove that every subgroup of G/N has the form H/N where H is a subgroup of G which contains N. Also show that H is a normal subgroup of G if and only if H/N is a normal subgroup of G/N.

Solution: This is parallel to the solution of #10. Let K be a subgroup of G/N. Define $\bar{K} = \{g \in G | gN \in K\}$. Let $g_1, g_2 \in \bar{K}$. Then $g_1g_2N = (g_1N)(g_2N) \in K$ and $g_1^{-1}N = (g_1N)^{-1} \in K$. Thus $g_1g_2, g_1^{-1} \in \bar{K}$ so \bar{K} is a subgroup of G. Now if $h \in N$ we have $hN = N = e_{G/N} \in K$. Thus $h \in \bar{K}$ and so $N \subseteq \bar{K}$. Then N is a normal subgroup of \bar{K} and $\bar{K}/N = \{gN | g \in \bar{K}\} = K$. Furthermore, if K is a normal subgroup in $G/N, h \in \bar{K}$ and $g \in G$, then $ghg^{-1}N = (gN)(hN)(gN)^{-1} \in K$ so $ghg^{-1} \in \bar{K}$. Thus if K is a normal subgroup of G and if $hN \in K, gN \in G/N$ then $h \in \bar{K}$ and so $ghg^{-1} \in \bar{K}$. Then $(gN)(hN)(gN)^{-1} = ghg^{-1}N \in K$ so K is a normal subgroup of G/N.

#12 Let G and H be groups, N be a normal subgroup of G, and f be a homomorphism from G to H.

(a) Let e_G be the identity element of G, e_H be the identity element of H, and let $g \in G$. Show that $f(e_G) = e_H$ and that $f(g^{-1}) = f(g)^{-1}$.

- (b) Show that ker(f) is a normal subgroup of G.
- (c) Show that f(G) is a subgroup of H.
- (d) Give an example to show that f(N) does not have to be a normal subgroup of H.
- (e) Show that if f is surjective then f(N) is a normal subgroup of f(G).

Solution:

(a) $f(e_G) = f(e_G e_G) = f(e_G)f(e_G)$ and so

$$e_H = f(e_G)(f(e_G))^{-1} = f(e_G)f(e_G)(e(e_G)^{-1}) = f(e_G).$$

Then $e_H = f(e_G) = f(gg^{-1}) = f(g)f(g^{-1})$ and so

$$f(g)^{-1} = f(g)^{-1}e_H = f(g)^{-1}f(g)f(g)^{-1} = f(g)^{-1}.$$

(b) Let $g_1, g_2 \in ker(f)$ and $h \in G$. Then $f(g_1g_2) = f(g_1)f(g_2) = e_He_H = e_H$ so $g_1, g_2 \in ker(f)$ and $f(g_1^{-1}) = f(g_1)^{-1} = e_H^{-1} = e_H$ so $g_1^{-1} \in ker(f)$. Hence ker(f) is a subgroup of G. Also $f(hg_1h^{-1}) = f(h)f(g_1)f(h)^{-1}$. Since $g_1 \in ker(f)$ this is equal to $f(h)e_Hf(h)^{-1} = f(h)f(h)^{-1} = e_H$. Thus $hg_1h^{-1} \in ker(f)$ and so ker(f) is a normal subgroup of G.

(c) Let $u_1, u_2 \in f(G)$. Then $u_1 = f(g_1)$ and $u_2 = f(g_2)$ for some $g_1, g_2 \in G$. Then $u_1u_2 = f(g_1)f(g_2) = f(g_1g_2) \in f(G)$. Also $u_1^{-1} = f(g_1)^{-1} = f(g_1^{-1}) \in f(G)$. Thus f(G) is a sbugroup of H.

(d) Let G be a cyclic group of order 2 generated by an element a. Thus $G = \{e_G, a\}$. Let $H = S_3$. Define $f : G \to H$ by $f(a) = (12), f(e_G) = e_H = (1)(2)(3)$. Then f is a homomorphism and $f(G) = \{(1)(2)(3), (12)\}$. Then f(G) is not normal in H, since $(13)(12)(13)^{-1} = (13)(12)(13) = (23) \notin f(G)$.

(e) We know (from part (c)) that f(N) is a subgroup of H. Let $u \in f(N)$ and $h \in H$. Then u = f(v) for some $v \in N$ and (since f is surjective) h = f(g) for some

 $g \in G$. Then $huh^{-1} = f(g)f(v)f(g)^{-1} = f(g)f(v)f(g^{-1}) = f(gvg^{-1})$. Since N is normal in $G, gvg^{-1} \in N$ and so $huh^{-1} \in f(N)$. Thus f(N) is normal in H.

#13 Write (137562)(234)(57) as a product of disjoint cycles.

Solution: (134)(276)

#14 (a) Find $\sigma \in S_8$ such that $\sigma(87654321) = (12345678)$. (b) Find $\tau \in S_8$ such that $\tau(87654321)\tau^{-1} = (12345678)$.

Solution:

(a) $\sigma = (12345678)(87654321)^{-1} = (12345678)(12345678) = (1357)2468).$

(b) $\tau(87654321)\tau^{-1} = (\tau(8)\tau(7)...\tau(1))$ and so we may take

$$\tau(8) = 1, \tau(7) = 2, ..., \tau(1) = 8.$$

Thus $\tau = (18)(27)(36)(45)$ satisfies the conditions. (There are 7 other possibilities for τ .)

#15 Let C(n) denote the cyclic group of order n.

- (a) Show that $C(5) \times C(6)$ is isomorphic to C(30).
- (b) Show that $C(2) \times C(8)$ is not isomorphic to C(8)

Solution:

(a) Let $\langle a \rangle$ and $\langle b \rangle$ be cyclic groups where a has order 5 and b has order 6. Then $\langle a \rangle \times \langle b \rangle = \{(a^i, b^j) | 0 \leq i < 5, 0 \leq j < 6\}$. Suppose $(a, b)^k = (e, e)$. Since $(a, b)^k = (a^k, b^k)$ we have $a^k = e$ and $b_k = e$. Thus 5|k and 6|k. Hence 30 divides k and so (a, b) has order 30. But $|\langle a \rangle \times \langle b \rangle| = 30$ so $\langle a \rangle \times \langle b \rangle = \langle (a, b) \rangle$ is cyclic of order 30.

(b) $C(2) \times C(8)$ has order 16 while C(8) has order 8, so they cannot be isomorphic.

#16 (a) Can S_{10} contain an element of order 14? Why or why not?

(b) Can S_{10} contain an element of order 16? Why or why not?

Solution:

(a) Yes. (1234567)(89) is such an element.

(b) No. Suppose $\sigma \in S_{10}$ has order 16. Since σ a product of disjoint cycles, since a cycle of length k has order k, and since disjoint cycles commute, we see that the length of any cycle occuring in the expression for σ must be a divisor of 16, hence must be 1, 2, 4 or 8. But then σ^8 is the identity, so the order of σ is a divisor of 8.

#17 Let G be a group, H be a subgroup of G, ad $a, b \in G$.

- (a) Show that either Ha = Hb or $Ha \cap Hb = \emptyset$.
- (b) Show that |Ha| = |Hb|.
- (c) Suppose |G| is finite. Prove that |H| divides |G|.

Solution:

(a) Suppose $c \in Ha \cap Hb$. Then $c = h_1a = h_2b$ for some $h_1, h_2 \in H$. Hence $a = h_1^{-1}h_1a = h_1^{-1}h_2b$ and so $ab^{-1} = h_1^{-1}h_2bb^{-1} = h_1^{-1}h_2 \in H$. Also $ba^{-1} = (ab^{-1})^{-1} \in H$.

Then if $u \in Ha$ we have u = ka for some $k \in H$ and so $u = kab^{-1}b$. But $kab^{-1} \in H$ and so $u \in Hb$. Thus $Ha \subseteq Hb$. Similarly, if $v \in Hb$ then v = lb for some $l \in H$ and $v = lba^{-1}a$. Since $lba^{-1} \in H$ we have $v \in Ha$ and so $Hb \subseteq Ha$. Thus Ha = Hb.

(b) Define $f : Ha \to Hb$ and $g : Hb \to Ha$ by $f(u) = ua^{-1}b$ and $g(v) = vb^{-1}a$. Then f and g are inverse mappings, so both are one-to-one and onto. Therefore |Ha| = |Hb|.

(c) In view of (a) G is the union of the distinct right coset of H. The number of distinct right cosets of H in G is usually denoted [G : H]. Since these all contain |H| elements, we have |G| = [G : H]|H|.

#18 (a) Let $R = \mathbb{Z}[\sqrt{7}]$. Show that the quotient field of R is isomorphic to $\mathbb{Q}[\sqrt{7}]$. (b) Prove that $\mathbb{Q}[\sqrt{7}]$ is a Euclidean domain with $\delta(a + b\sqrt{7}) = a^2 + 7b^2$.

Solution:

(a) Let $0 \neq u = a + b\sqrt{7} \in \mathbf{Q}[\sqrt{7}]$. Then $u(a - b\sqrt{7}) = a^2 - 7b^2$. Since $\sqrt{7}$ is irrational, this is $\neq 0$. Thus $u((a - b\sqrt{7})(a^2 - 7b^2)^{-1} = 1$. Hence every nonzero element of $\mathbf{Q}[\sqrt{7}]$ has an inverse and so $\mathbf{Q}[\sqrt{7}]$ is a field.

Now let $\mathbf{Z}[\sqrt{7}] \subseteq F \subseteq \mathbf{Q}[\sqrt{7}]$ where F is a field. Then $\sqrt{7} \in F$. Furthermore, $\mathbf{Z} \subseteq F$ and since F is a field, this means $\mathbf{Q} \subseteq F$. Thus $F = \mathbf{Q}[\sqrt{7}]$. Since any field containing $\mathbf{Z}[\sqrt{7}]$ contains subfield isomorphic to the quotient field, $\mathbf{Q}[\sqrt{7}]$ must be isomorphic to the quotient field.

(b) Since $\mathbf{Q}[\sqrt{7}]$ is a field, it is a Euclidean domain for any function δ , in particular for the given function.

#19 Let G be a group and H, K be subgroups of G. Assume HK = KH.

(a) Show that HK is a subgroup of G.

(b) Is H a normal subgroup of HK? (Think about subgroups of $S_{3.}$)

(c) Suppose $H \cap K = \{e\}$ and hk = kh for all $h \in H, k \in K$. Prove that HK is isomorphic to $H \times K$.

Solution:

(a) Let $u_1, u_2 \in HK$. Then $u_1 = h_1k_1, u_2 = h_2k_2$ for some $h_1, h_2 \in H, k_1, k_2 \in K$. Then $u_1u_2 = (h_1k_1)(h_2k_2) = h_1(k_1h_2)k_2$. Since HK = KH there are some $h_3 \in H, k_3 \in K$ so that $k_1h_2 = h_3k_3$. Then $u_1u_2 = h_1(k_1h_2)k_2 = h_1(h_3k_3)k_2 = (h_1h_3)(k_3k_2) \in HK$. Also $u_1^{-1} = (h_1k_1)^{-1} = k_1^{-1}h^{-1} \in KH = HK$. Thus HK is a subgroup of G.

(b) *H* is not necessarily normal in *HK*. For example if $H = \{id, (12)\} \subseteq S_3$ and $K = \{id, (123), (132)\} \subseteq S_3$ then $HK = KH = S_3$ but we know that *H* is not a normal subgroup of S_3 (for $(13)(12)(13) = (23) \notin H$).

(c) Define $f: H \times K \to HK$ by f((h, k)) = hk. Then for $(h_1, k_1), (h_2, k_2) \in H \times K$ we have $f(((h_1, k_1)(h_2, k_2)) = f((h_1h_2, k_1k_2)) = h_1h_2k_1k_2$. Now by our assumption we have $h_2k_1 = k_1h_2$ so $f((h_1, k_1)(h_2, k_2)) = h_1h_2k_1k_2 = h_1k_1h_2k_2 = f((h_1, k_1))f((h_2, k_2))$. Thus f is a homomorphism. Now any element in HK has the form hk for some $h \in H, k \in K$. But hk = f((h, k)). Thus f is onto. Also, if $(h, k) \in ker(f)$ then e = f((h, k)) = hk so $h = k^{-1} \in H \cap K = \{e\}$. Thus $ker(f) = \{(e, e)\}$ so f is one-to-one.

#20 Let $K = \{f \in \mathbb{C}[x] | f(-2) = 0\}$ and $L = \{g \in \mathbb{C}[x] | g(-2) = g(5) = 0\}.$ (a) Show that K and L are ideals in $\mathbb{C}[x]$.

- (b) What is the quotient $\mathbf{C}[x]/K$?
- (c) What is the quotient $\mathbf{C}[x]/L$?

Solution: Let $\theta : \mathbf{C}[x] \to \mathbf{C}$ be defined by $\theta(h(x)) = h(-2)$. Then θ is a homomorphicm and is surjective (since the constant polynomial c maps to the complex number c). The kernel of θ is K. Similarly, define $\tau : \mathbf{C}[x] \to \mathbf{C} \times \mathbf{C}$ by $\tau(h(x)) = (\tau(-2), \tau(5))$. Then τ is a homomorphism and is surjective (since the polynomial $\frac{-a}{7}(x-5) + \frac{b}{7}(x+2)$ maps to the pair (a,b). The kernel of τ is L. Now (a) follows since K and L are kernels of homomorphisms. By applying the First Isomorphism Theorem to θ we see that $\mathbf{C}[x]/K$ is isomorphic to \mathbf{C} and by applying the First Isomorphism Theorem to τ we see that $\mathbf{C}[x]/L$ is isomorphic to $\mathbf{C} \times \mathbf{C}$.