Math 351

Solutions to review problems for Final Exam
December 16, 2007
\#1 Find $(78,2340)$ and write it in the form $78 a+2340 b$ where a and b are integers.

Solution:

$$
\begin{gathered}
2370=30(78)+30 \text { and so } 30=2370-30(78) \\
78=2(30)+18 \text { and so } 18=78-2(30) \\
30=18+12 \text { and so } 12=30-18 \\
18=12+6 \text { and so } 6=18-12 \\
12=2(6)+0
\end{gathered}
$$

Thus $(78,2370)=6$. Furthemore

$$
\begin{gathered}
6=18-12=(18-(30-18)=-30+2(18)= \\
-30+2(78-2(30))=2(78)-5(30)= \\
2(78)-5(2370-30(78))=-5(2370+152(78)
\end{gathered}
$$

$\# 2$ Find [12 $^{-1}$ in \mathbf{Z}_{25}.
Solution: $25=2(12)+1$ so

$$
1-(-2)(12)=25
$$

and hence

$$
1 \equiv(-2)(12) \bmod (25)
$$

Thus

$$
[1]=[-2][12] \text { in } \mathbf{Z}_{25}
$$

Hence

$$
[12]^{-1}=[-2]=[23] \text { in } \mathbf{Z}_{12}
$$

$\# 3$ Let R be a ring and A, B be ideals in R. Let $A+B$ denote $\{a+b \mid a \in A, b \in B\}$
(a) Prove that $A+B$ is an ideal in R.
(b) Recall that if $n \in \mathbf{A}$, then (n) denotes $\{n k \mid k \in \mathbf{Z}\}=n \mathbf{Z}$. Prove that any ideal in \mathbf{Z} is equal to (n) for some $n \in \mathbf{Z}, n \geq 0$.
(c) Let $m, n \in \mathbf{Z}, m, n>0$. Prove that $(m)+(n)=((m, n))$. (Recall that (m, n) denotes the greatest common divisor of m and n.)

Solution:

(a) Let $c_{1}, c_{2} \in A+B$ and $r \in R$. Then $c_{1}=a_{1}+b_{1}$ and $c_{2}=a_{2}+b_{2}$ for some $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$. Then $c_{1}-c_{2}=\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right)=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right)$. Since A and B are ideals (and hence subrings) $a_{1}-a_{2} \in A$ and $b_{1}-b_{2} \in B$. Thus $c_{1}-c_{2} \in A+B$.

Also $r c_{1}=r\left(a_{1}+b_{1}\right)=r a_{1}+r b_{1}$. Since A and B are ideals, $r a_{1} \in A$ and $r b_{1} \in B$. Thus $r c_{1} \in A+B$. Similarly $c_{1} r=a_{1} r+b_{1} r \in A+B$. Thus $A+B$ is an ideal
(b) Let I be an ideal in \mathbf{Z}. If $I=\{0\}$ then $I=(0)$ and we are done. If not, I contains a nonzero integer and (since $a \in I$ implies $(-1) a \in I) I$ contains a positive integer. Thus the set of positive integers in I is nonempty and so this set contains a smallest integer. Let this smallest integer in I be n. Since $n \in I$ we have $(n) \subseteq I$. Now let $k \in I$. Then $k=q n+r$ for some $q, r \in \mathbf{Z}$ with $0 \leq r<n$. But $r=k-q n \in I$, so, since n is the smallest positive integer in I, we must have $r=0$. Thus $k=q n \in(n)$ so we have $I \subseteq(n)$ and hence $I=(n)$.
(c) By part (a), $(m)+(n)$ is an ideal and by part (b) we have $(m)+(n)=(k)$ for some positive integer k. We must show that $k=(m, n)$. We know that $(m, n)=a m+b n$ for some $a, b \in \mathbf{Z}$ and so $(m, n) \in(m)+(n)=(k)$. Thus $k \mid(m, n)$. But $k \in(k)=(m)+(n)$ and (m, n) divides both m and n, so $(m, n) \mid k$. Thus $(m, n)=k$ as required.
\#4 Find all the ideals in $\mathbf{Z}_{10} \times \mathbf{Z}$. Which of these are prime ideals? Which of these are maximal ideals?

Solution: Let $R=\mathbf{Z}_{10} \times \mathbf{Z}$. Note that $R_{1}=\mathbf{Z}_{10} \times(0) \subseteq \mathbf{Z}_{10} \times \mathbf{Z}$ and $R_{2}=(0) \times \mathbf{Z} \subseteq \mathbf{Z}_{10} \times \mathbf{Z}$ are ideals in R. Then if I is any ideal in R we have that $I_{1}=R_{1} \cap I$ and $I_{2}=R_{2} \cap I$ are ideals in R. But if $(a, b) \in I$ then $(a, b)=(a, 0)+(0, b)=(a, b)(1,0)+(a, b)(0,1) \in I_{1}+I_{2}$. Since I_{1} is isomorphic to an ideal in \mathbf{Z}_{10} (hence to ($[k]$) where $k=0,1,2,5$) and I_{2} is isomorphic to an ideal in \mathbf{Z} (hence to (n) where $n \in \mathbf{Z}, n \geq 0)$. Now $(1,0)(0,1)=(0,0)$ in R and so the quotient of R by $([k]) \times(n)$ will have zero divisors unless $k=1$ or $n=1$. Now $\mathbf{Z} /([k])$ is an integral domain if and only if $k=2$ or 5 and in this case it is a field. Furthermore, $\mathbf{Z} /(n)$ is an integral domain if and if either n is prime (in which case it is a field) or if $n=0$ (in which case it is not a field). Thus the prime ideals are $([k]) \times \mathbf{Z}$ for $k=2,5, \mathbf{Z}_{10} \times(p)$ for p prime, and $\mathbf{Z}_{10} \times(0)$. All of these except the last are also maximal. \#5 Find $\left[x^{2}+x+1\right]^{-1}$ in $\mathbf{Q}[x] /\left(x^{3}+2\right)$.

Solution: $x^{3}+2=(x-1)\left(x^{2}+x+1\right)+3$. Thus

$$
1=\left(\frac{-1(x-1)}{3}\right)\left(x^{2}+x+1\right)+\frac{x^{3}+2}{3}
$$

and so

$$
[1]=\left[\frac{-1(x-1)}{3}\right]\left[x^{2}+x+1\right] .
$$

Thus $\left[x^{2}+x+1\right]^{-1}=\left[\frac{-1(x-1)}{3}\right]$.
\#6 Find $\left(x^{3}+2 x^{2}-x-2, x^{4}-1\right)$ in $\mathbf{Q}[x]$ and exrpess it in the form $\left(x^{3}+2 x^{2}-x-2\right) a+$ $\left(x^{4}-1\right) b$ where $a, b \in \mathbf{Q}[x]$.

Solution:

$$
x^{4}-1=(x-2)\left(x^{3}+2 x^{2}-x-2\right)+5\left(x^{2}-1\right)
$$

and so

$$
x^{2}-1=\left(\frac{-(x-2)}{5}\right)\left(x^{3}+2 x^{2}-x-2\right)+\frac{\left(x^{4}-1\right)}{5}
$$

and

$$
x^{3}+2 x^{2}-x-2=(x+2)\left(x^{2}-1\right) .
$$

Thus $x^{2}-1=\left(x^{3}+2 x^{2}-x-2, x^{4}-1\right)$.
$\# 7$ (a) Let $R=\left\{A \in M_{2}(\mathbf{R})|A| \begin{array}{c}1 \\ -1\end{array}\left|=\left|\begin{array}{l}0 \\ 0\end{array}\right|\right\}\right.$. Show that A is a subring of $M_{2}(\mathbf{R})$ but that A is not an ideal.
(b) Let $S=\left\{\left.B \in M_{2}(\mathbf{R})|B| \begin{array}{c}1 \\ -1\end{array}|\in \mathbf{R}| \begin{array}{c}1 \\ -1\end{array} \right\rvert\,\right\}$. Show that S is a subring of $M_{2}(\mathbf{R})$.
(c) Show that R is an ideal in S and that S / R is isomorphic to \mathbf{R}.

Solution:
(a) Let $A_{1}, A_{2} \in R$. Then

$$
\left(A_{1}-A_{2}\right)\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=A_{1}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|-A_{2}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=\left|\begin{array}{l}
0 \\
0
\end{array}\right|
$$

and

$$
\left(A_{1} A_{2}\right)\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=A_{1}\left(A_{2}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|\right)=A_{1}\left|\begin{array}{l}
0 \\
0
\end{array}\right|=\left|\begin{array}{l}
0 \\
0
\end{array}\right| .
$$

Hence $A_{1}-A_{2} \in R$ and $A_{1} A_{2} \in R$, so R is a subring. However $\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right| \in R$ but

$$
\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|\left|\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right|=\left|\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right| \notin R .
$$

Thus R is not an ideal.
(b) Let $B_{1}, B_{2} \in S$. Thus $B_{1}\left|\begin{array}{c}1 \\ -1\end{array}\right|=k_{1}\left|\begin{array}{c}1 \\ -1\end{array}\right|$ and $B_{2}\left|\begin{array}{c}1 \\ -1\end{array}\right|=k_{2}\left|\begin{array}{c}1 \\ -1\end{array}\right|$ for some $k_{1}, k_{2} \in \mathbf{R}$. Then

$$
\left(B_{1}-B_{2}\right)\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=B_{1}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|-B_{2}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=k_{1}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|-k_{2}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=\left(k_{1}-k_{2}\right)\left|\begin{array}{c}
1 \\
-1
\end{array}\right|
$$

and

$$
\left(B_{1} B_{2}\right)\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=B_{1}\left(B_{2}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|\right)=B_{1}\left(k_{2}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=k_{2} B_{1}\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=k_{1} k_{2}\left|\begin{array}{c}
1 \\
-1
\end{array}\right| .\right.
$$

Thus S is a subring.
(c) Let $A \in R$ and $B \in S$ with $B\left|\begin{array}{c}1 \\ -1\end{array}\right|=k\left|\begin{array}{c}1 \\ -1\end{array}\right|$. Then

$$
(B A)\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=B\left(A\left|\begin{array}{c}
1 \\
-1
\end{array}\right|\right)=B\left(\left|\begin{array}{l}
0 \\
0
\end{array}\right|\right)=\left|\begin{array}{l}
0 \\
0
\end{array}\right|
$$

and

$$
(A B)\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=A\left(B\left|\begin{array}{c}
1 \\
-1
\end{array}\right|\right)=A\left(k\left|\begin{array}{l}
0 \\
0
\end{array}\right|\right)=k A\left|\begin{array}{c}
1 \\
-1
\end{array}\right|=k\left|\begin{array}{l}
0 \\
0
\end{array}\right|=\left|\begin{array}{l}
0 \\
0
\end{array}\right| .
$$

Thus R is an ideal in S. Now define $\theta: S \rightarrow \mathbf{R}$ by $B\left|\begin{array}{c}1 \\ -1\end{array}\right|=\theta(B)\left|\begin{array}{c}1 \\ -1\end{array}\right|$. It is easy to check that θ is a surjective homomorphism with kernel R. Thus the First Isomorphism Theorem gives that S / R is isomorphic to \mathbf{R}.
\#8 Let F be a field and $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots$ be ideals of $F[x]$. Show that there is some k such that $I_{k}=I_{k+1}=\ldots$.

Solution: Any ideal in $F[x]$ is equal to $(f(x))$ where $f(x)$ is either 0 or some monic polynomial $f(x)$. Thus we may find $f_{1}(x), f_{2}(x), \ldots$ such that $I_{j}=\left(f_{j}(x)\right)$ for all j. Then $f_{j}(x) \in\left(f_{j}(x)\right)=I_{j} \subseteq I_{j+1}=\left(f_{j+1}(x)\right)$ and so $f_{j}(x)=q_{j}(x) f_{j+1}(x)$ for some polynomial $q_{j}(x)$. If $f_{j}(x) \neq 0$, this implies $\operatorname{deg}\left(f_{j}(x)\right) \geq \operatorname{deg}\left(f_{j+1}(x)\right)$ and so $\operatorname{deg}\left(f_{j}(x)\right) \geq \operatorname{deg}\left(f_{j+l}(x)\right.$ for all $l \geq 0$.Consider $S=\left\{\operatorname{deg}\left(f_{j}(x)\right) \mid f_{j}(x) \neq 0, j \geq 1\right\}$. If $S=\emptyset$ then every $I_{j}=(0)$ and so the result holds. If S is not empty it contains a minimal element, say $\operatorname{deg}\left(f_{k}(x)\right)$. We already know $\operatorname{deg}\left(f_{k}(x)\right) \geq \operatorname{deg}\left(f_{k+l}(x)\right)$ for all $l \geq 0$, so the minimality of $\operatorname{deg}\left(f_{k}(x)\right)$ implies $\operatorname{deg}\left(f_{k}(x)\right)=\operatorname{deg}\left(f_{k+l}(x)\right)$ for all $l \geq 0$. Since $f_{k}(x) \in\left(f_{k}(x)\right)=I_{k} \subseteq I_{k+l}=$ $\left(f_{k+l}(x)\right)$ we see that $f_{k+l}(x)$ divides $f_{k}(x)$. Since these are monic polynomials of the same degree, they are equal. Thus $f_{k}(x)=f_{k+1}(x)=\ldots$ and so $I_{k}=I_{k+1}=\ldots$
\#9 (a) Is $x^{5}+3 x^{4}+6 x^{2}-9 x+3$ irreducible over \mathbf{Q} ? Why or why not?
(b) Is $x^{5}+x^{4}+1$ irreducible over \mathbf{Z}_{2} ? Why or why not?

Solution:

(a) A polynomial in $\mathbf{Z}[x]$ is irreducible over \mathbf{Q} if and only if it is irreducible over \mathbf{Z}. The given polynomial is irreducible over \mathbf{Z} by Eisenstein's criterion (with $p=3$).
(b) Note that the polynomial has no roots (since 0 and 1 are the only possibilities and neither is a root). Since the polynomial is of degree five, it can be reducible only if it is the product of an irreducible polynomial of degree 2 and an irreducible polynomial of degree 3 . Now there is only one irreducible polynomial of degree 2 in $\mathbf{Z}_{2}[x]$, namely $x^{2}+x+1$ (because there are only 4 polynomials of degree 4 in $\mathbf{Z}_{2}[x]$ and the other 3 all have roots). Thus if $x^{5}+x^{4}+1$ is reducible we must have $x^{5}+x^{4}+1=\left(x^{3}+a x^{2}+b x+c\right)\left(x^{2}+x+1\right)$ for some $a, b, c \in \mathbf{Z}_{2}$. Writing out the product and comparing coefficients gives $a=0, b=c=1$. Thus $x^{5}+x^{4}+1=\left(x^{3}+x+1\right)\left(x^{2}+x+1\right)$ in $\mathbf{Z}_{2}[x]$, so the polynomial is reducible.
$\# 10$ Let R be a ring and I be an ideal in R. Prove that every subring of R / I has the form J / I where J is a subring of R which contains I. Also show that J is an ideal in R if and only if J / I is an ideal in R / I.

Solution: Let A be a subring in R / I. Define $\bar{A}=\{r \in R \mid r+I \in A\}$. Let $a_{1}, a_{2} \in \bar{A}$. Then $a_{1}+I, a_{2}+I \in A$ and so $\left(a_{1}-a_{2}\right)+I=\left(a_{1}+I\right)-\left(a_{2}+I\right) \in A$ and $\left(a_{1} a_{2}\right)+I=$ $\left(a_{1}+I\right)\left(a_{2}+I\right) \in A$. Thus $a_{1}-a_{2}, a_{1} a_{2} \in \bar{A}$ and so \bar{A} is a subring of R. Now if $b \in I$ we have $b+I=0+I=0_{R / I} \in A$. Thus $b \in \bar{A}$ and so $I \subseteq \bar{A}$. Then I is an ideal in \bar{A} and $\bar{A} / I=\{a+I \mid a \in \bar{A}\}=A$. Furthermore, if A is an ideal, $a \in \bar{A}$ and $r \in R$, then $r a+I=(r+I)(a+I) \in(R / I) A \subseteq A$ so $r a \in \bar{A}$ and $a r+I=(a+I)(r+I) \in A(R / I) \subseteq A$ so ar $\in \bar{A}$. Thus if A is an ideal in R / I then \bar{A} is an ideal in R. Conversely, if \bar{A} is an ideal in R and if $a+I \in A, r+I \in R / I$ then $a \in \bar{A}$ and so ra, ar $\in \bar{A}$. Then $(r+I)(a+I)=r a+I \in A$ and $(a+I)(r+I)=a r+I \in A$ so A is an ideal in R / I.
$\# 11$ Let G be a group and N a normal subgroup of G. Prove that every subgroup of G / N has the form H / N where H is a subgroup of G which contains N. Also show that H is a normal subgroup of G if and only if H / N is a normal subgroup of G / N.

Solution: This is parallel to the solution of $\# 10$. Let K be a subgroup of G / N. Define $\bar{K}=\{g \in G \mid g N \in K\}$. Let $g_{1}, g_{2} \in \bar{K}$. Then $g_{1} g_{2} N=\left(g_{1} N\right)\left(g_{2} N\right) \in K$ and $g_{1}^{-1} N=$ $\left(g_{1} N\right)^{-1} \in K$. Thus $g_{1} g_{2}, g_{1}^{-1} \in \bar{K}$ so \bar{K} is a subgroup of G. Now if $h \in N$ we have $h N=N=e_{G / N} \in K$. Thus $h \in \bar{K}$ and so $N \subseteq \bar{K}$. Then N is a normal subgroup of \bar{K} and $\bar{K} / N=\{g N \mid g \in \bar{K}\}=K$. Furthermore, if K is a normal subgroup in $G / N, h \in \bar{K}$ and $g \in G$, then $g h g^{-1} N=(g N)(h N)(g N)^{-1} \in K$ so $g h g^{-1} \in \bar{K}$ Thus if K is a normal subgroup of G / N then \bar{K} is a normal subgroup of G. Conversely, if \bar{K} is a normal subgroup of G and if $h N \in K, g N \in G / N$ then $h \in \bar{K}$ and so $g h g^{-1} \in \bar{K}$. Then $(g N)(h N)(g N)^{-1}=$ $g h g^{-1} N \in K$ so K is a normal subgroup of G / N.
$\# 12$ Let G and H be groups, N be a normal subgroup of G, and f be a homomorphism from G to H.
(a) Let e_{G} be the identity element of G, e_{H} be the identity element of H, and let $g \in G$. Show that $f\left(e_{G}\right)=e_{H}$ and that $f\left(g^{-1}\right)=f(g)^{-1}$.
(b) Show that $\operatorname{ker}(f)$ is a normal subgroup of G.
(c) Show that $f(G)$ is a subgroup of H.
(d) Give an example to show that $f(N)$ does not have to be a normal subgroup of H.
(e) Show that if f is surjective then $f(N)$ is a normal subgroup of $f(G)$.

Solution:

(a) $f\left(e_{G}\right)=f\left(e_{G} e_{G}\right)=f\left(e_{G}\right) f\left(e_{G}\right)$ and so

$$
e_{H}=f\left(e_{G}\right)\left(f\left(e_{G}\right)\right)^{-1}=f\left(e_{G}\right) f\left(e_{G}\right)\left(e\left(e_{G}\right)^{-1}=f\left(e_{G}\right)\right.
$$

Then $e_{H}=f\left(e_{G}\right)=f\left(g g^{-1}\right)=f(g) f\left(g^{-1}\right)$ and so

$$
f(g)^{-1}=f(g)^{-1} e_{H}=f(g)^{-1} f(g) f(g)^{-1}=f(g)^{-1}
$$

(b) Let $g_{1}, g_{2} \in \operatorname{ker}(f)$ and $h \in G$. Then $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)=e_{H} e_{H}=e_{H}$ so $g_{1}, g_{2} \in \operatorname{ker}(f)$ and $f\left(g_{1}^{-1}\right)=f\left(g_{1}\right)^{-1}=e_{H}^{-1}=e_{H}$ so $g_{1}^{-1} \in \operatorname{ker}(f)$. Hence $k e r(f)$ is a subgroup of G. Also $f\left(h g_{1} h^{-1}\right)=f(h) f\left(g_{1}\right) f(h)^{-1}$. Since $g_{1} \in \operatorname{ker}(f)$ this is equal to $f(h) e_{H} f(h)^{-1}=f(h) f(h)^{-1}=e_{H}$. Thus $h g_{1} h^{-1} \in \operatorname{ker}(f)$ and so $\operatorname{ker}(f)$ is a normal subgroup of G.
(c) Let $u_{1}, u_{2} \in f(G)$. Then $u_{1}=f\left(g_{1}\right)$ and $u_{2}=f\left(g_{2}\right)$ for some $g_{1}, g_{2} \in G$. Then $u_{1} u_{2}=f\left(g_{1}\right) f\left(g_{2}\right)=f\left(g_{1} g_{2}\right) \in f(G)$. Also $u_{1}^{-1}=f\left(g_{1}\right)^{-1}=f\left(g_{1}^{-1}\right) \in f(G)$. Thus $f(G)$ is a sbugroup of H.
(d) Let G be a cyclic group of order 2 generated by an element a. Thus $G=\left\{e_{G}, a\right\}$. Let $H=S_{3}$. Define $f: G \rightarrow H$ by $f(a)=(12), f\left(e_{G}\right)=e_{H}=(1)(2)(3)$. Then f is a homomorphism and $f(G)=\{(1)(2)(3),(12)\}$. Then $f(G)$ is not normal in H, since $(13)(12)(13)^{-1}=(13)(12)(13)=(23) \notin f(G)$.
(e) We know (from part (c)) that $f(N)$ is a subgroup of H. Let $u \in f(N)$ and $h \in H$. Then $u=f(v)$ for some $v \in N$ and (since f is surjective) $h=f(g)$ for some
$g \in G$. Then $h u h^{-1}=f(g) f(v) f(g)^{-1}=f(g) f(v) f\left(g^{-1}\right)=f\left(g v g^{-1}\right)$. Since N is normal in $G, g v g^{-1} \in N$ and so $h u h^{-1} \in f(N)$. Thus $f(N)$ is normal in H.
\#13 Write (137562)(234)(57) as a product of disjoint cycles.
Solution: (134)(276)
$\# 14$ (a) Find $\sigma \in S_{8}$ such that $\sigma(87654321)=(12345678)$.
(b) Find $\tau \in S_{8}$ such that $\tau(87654321) \tau^{-1}=(12345678)$.

Solution:

(a) $\left.\sigma=(12345678)(87654321)^{-1}=(12345678)(12345678)=(1357) 2468\right)$.
(b) $\tau(87654321) \tau^{-1}=(\tau(8) \tau(7) \ldots \tau(1))$ and so we may take

$$
\tau(8)=1, \tau(7)=2, \ldots, \tau(1)=8
$$

Thus $\tau=(18)(27)(36)(45)$ satisfies the conditions. (There are 7 other possibilities for τ.) $\# 15$ Let $C(n)$ denote the cyclic group of order n.
(a) Show that $C(5) \times C(6)$ is isomorphic to $C(30)$.
(b) Show that $C(2) \times C(8)$ is not isomorphic to $C(8)$

Solution:

(a) Let $\langle a\rangle$ and $\langle b\rangle$ be cyclic groups where a has order 5 and b has order 6 . Then $<a>\times=\left\{\left(a^{i}, b^{j}\right) \mid 0 \leq i<5,0 \leq j<6\right\}$. Suppose $(a, b)^{k}=(e, e)$. Since $(a, b)^{k}=\left(a^{k}, b^{k}\right)$ we have $a^{k}=e$ and $b_{k}=e$. Thus $5 \mid k$ and $6 \mid k$. Hence 30 divides k and so (a, b) has order 30. But $|<a\rangle \times\langle b\rangle \mid=30$ so $<a\rangle \times<b\rangle=<(a, b)>$ is cyclic of order 30.
(b) $C(2) \times C(8)$ has order 16 while $C(8)$ has order 8 , so they cannot be isomorphic.
\#16 (a) Can S_{10} contain an element of order 14 ? Why or why not?
(b) Can S_{10} contain an element of order 16? Why or why not?

Solution:

(a) Yes. (1234567)(89) is such an element.
(b) No. Suppose $\sigma \in S_{10}$ has order 16. Since σ a product of disjoint cycles, since a cycle of length k has order k, and since disjoint cycles commute, we see that the length of any cycle occuring in the expression for σ must be a divisor of 16 , hence must be $1,2,4$ or 8. But then σ^{8} is the identity, so the order of σ is a divisor of 8 .
$\# 17$ Let G be a group, H be a subgroup of G, ad $a, b \in G$.
(a) Show that either $H a=H b$ or $H a \cap H b=\emptyset$.
(b) Show that $|H a|=|H b|$.
(c) Suppose $|G|$ is finite. Prove that $|H|$ divides $|G|$.

Solution:

(a) Suppose $c \in H a \cap H b$. Then $c=h_{1} a=h_{2} b$ for some $h_{1}, h_{2} \in H$. Hence $a=$ $h_{1}^{-1} h_{1} a=h_{1}^{-1} h_{2} b$ and so $a b^{-1}=h_{1}^{-1} h_{2} b b^{-1}=h_{1}^{-1} h_{2} \in H$. Also $b a^{-1}=\left(a b^{-1}\right)^{-1} \in H$.

Then if $u \in H a$ we have $u=k a$ for some $k \in H$ and so $u=k a b^{-1} b$. But $k a b^{-1} \in H$ and so $u \in H b$. Thus $H a \subseteq H b$. Similarly, if $v \in H b$ then $v=l b$ for some $l \in H$ and $v=l b a^{-1} a$. Since $l b a^{-1} \in H$ we have $v \in H a$ and so $H b \subseteq H a$. Thus $H a=H b$.
(b) Define $f: H a \rightarrow H b$ and $g: H b \rightarrow H a$ by $f(u)=u a^{-1} b$ and $g(v)=v b^{-1} a$. Then f and g are inverse mappings, so both are one-to-one and onto. Therefore $|H a|=|H b|$.
(c) In view of (a) G is the union of the distinct right coset of H. The number of distinct right cosets of H in G is usually denoted $[G: H]$. Since these all contain $|H|$ elements, we have $|G|=[G: H]|H|$.
$\# 18$ (a) Let $R=\mathbf{Z}[\sqrt{7}]$. Show that the quotient field of R is isomorphic to $\mathbf{Q}[\sqrt{7}]$.
(b) Prove that $\mathbf{Q}[\sqrt{7}]$ is a Euclidean domain with $\delta(a+b \sqrt{7})=a^{2}+7 b^{2}$.

Solution:

(a) Let $0 \neq u=a+b \sqrt{7} \in \mathbf{Q}[\sqrt{7}]$. Then $u(a-b \sqrt{7})=a^{2}-7 b^{2}$. Since $\sqrt{7}$ is irrational, this is $\neq 0$. Thus $u\left((a-b \sqrt{7})\left(a^{2}-7 b^{2}\right)^{-1}=1\right.$. Hence every nonzero element of $\mathbf{Q}[\sqrt{7}]$ has an inverse and so $\mathbf{Q}[\sqrt{7}]$ is a field.

Now let $\mathbf{Z}[\sqrt{7}] \subseteq F \subseteq \mathbf{Q}[\sqrt{7}]$ where F is a field. Then $\sqrt{7} \in F$. Furthermore, $\mathbf{Z} \subseteq F$ and since F is a field, this means $\mathbf{Q} \subseteq F$. Thus $F=\mathbf{Q}[\sqrt{7}]$. Since any field containing $\mathbf{Z}[\sqrt{7}]$ contains subfield isomorphic to the quotient field, $\mathbf{Q}[\sqrt{7}]$ must be isomorphic to the quotient field.
(b) Since $\mathbf{Q}[\sqrt{7}]$ is a field, it is a Euclidean domain for any function δ, in particular for the given function.
$\# 19$ Let G be a group and H, K be subgroups of G. Assume $H K=K H$.
(a) Show that $H K$ is a subgroup of G.
(b) Is H a normal subgroup of $H K$? (Think about subgroups of S_{3}.)
(c) Suppose $H \cap K=\{e\}$ and $h k=k h$ for all $h \in H, k \in K$. Prove that $H K$ is isomorphic to $H \times K$.

Solution:

(a) Let $u_{1}, u_{2} \in H K$. Then $u_{1}=h_{1} k_{1}, u_{2}=h_{2} k_{2}$ for some $h_{1}, h_{2} \in H, k_{1}, k_{2} \in K$. Then $u_{1} u_{2}=\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=h_{1}\left(k_{1} h_{2}\right) k_{2}$. Since $H K=K H$ there are some $h_{3} \in H, k_{3} \in K$ so that $k_{1} h_{2}=h_{3} k_{3}$. Then $u_{1} u_{2}=h_{1}\left(k_{1} h_{2}\right) k_{2}=h_{1}\left(h_{3} k_{3}\right) k_{2}=\left(h_{1} h_{3}\right)\left(k_{3} k_{2}\right) \in H K$. Also $u_{1}^{-1}=\left(h_{1} k_{1}\right)^{-1}=k_{1}^{-1} h^{-1} \in K H=H K$. Thus $H K$ is a subgroup of G.
(b) H is not necessarily normal in $H K$. For example if $H=\{i d,(12)\} \subseteq S_{3}$ and $K=\{i d,(123),(132)\} \subseteq S_{3}$ then $H K=K H=S_{3}$ but we know that H is not a normal subgroup of S_{3} (for $\left.(13)(12)(13)=(23) \notin H\right)$.
(c) Define $f: H \times K \rightarrow H K$ by $f((h, k))=h k$. Then for $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K$ we have $f\left(\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right)=f\left(\left(h_{1} h_{2}, k_{1} k_{2}\right)\right)=h_{1} h_{2} k_{1} k_{2}\right.$. Now by our assumption we have $h_{2} k_{1}=k_{1} h_{2}$ so $f\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right)=h_{1} h_{2} k_{1} k_{2}=h_{1} k_{1} h_{2} k_{2}=f\left(\left(h_{1}, k_{1}\right)\right) f\left(\left(h_{2}, k_{2}\right)\right)$. Thus f is a homomorphism. Now any element in $H K$ has the form $h k$ for some $h \in H, k \in K$. But $h k=f((h, k))$. Thus f is onto. Also, if $(h, k) \in \operatorname{ker}(f)$ then $e=f((h, k))=h k$ so $h=k^{-1} \in H \cap K=\{e\}$. Thus $\operatorname{ker}(f)=\{(e, e)\}$ so f is one-to-one.
$\# 20$ Let $K=\{f \in \mathbf{C}[x] \mid f(-2)=0\}$ and $L=\{g \in \mathbf{C}[x] \mid g(-2)=g(5)=0\}$.
(a) Show that K and L are ideals in $\mathbf{C}[x]$.
(b) What is the quotient $\mathbf{C}[x] / K$?
(c) What is the quotient $\mathbf{C}[x] / L$?

Solution: Let $\theta: \mathbf{C}[x] \rightarrow \mathbf{C}$ be defined by $\theta(h(x))=h(-2)$. Then θ is a homomorphicm and is surjective (since the constant polynomial c maps to the complex number c). The kernel of θ is K. Similarly, define $\tau: \mathbf{C}[x] \rightarrow \mathbf{C} \times \mathbf{C}$ by $\tau(h(x))=(\tau(-2), \tau(5))$. Then τ is a homomorphism and is surjective (since the polynomial $\frac{-a}{7}(x-5)+\frac{b}{7}(x+2)$ maps to the pair (a, b). The kernel of τ is L. Now (a) follows since K and L are kernels of homomorphisms. By applying the First Isomorphism Theorem to θ we see that $\mathbf{C}[x] / K$ is isomorphic to \mathbf{C} and by applying the First Isomorphism Theorem to τ we see that $\mathbf{C}[x] / L$ is isomorphic to $\mathbf{C} \times \mathbf{C}$.

