MATH 354-03

Practice questions for exam #1

I will work these problems at a review session on Sunday, 4/3, 3-5 PM in ARC-309 and again at a review session on Tuesday, 4/5, 7-9 PM in ARC-309. (ARC-309 is in the Mathematics and Science Learning Center on the third floor of ARC.) Remember that the exam is in class on Thursday, 4/7. Solutions to these problems will be posted after the 4/3 review session.

#1 Consider the linear programming problem

Maximize: $\mathbf{c}^T \mathbf{x}$ Subject to: $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$.

This problem is in standard form.

(a) State the dual problem.

(b) Show that if \mathbf{x} is any feasible solution to the primal problem and \mathbf{w} is any feasible solution to the dual problem then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{w}$.

(c) Show that if the primal problem is unbounded, then the dual problem is infeasible.

(d) Show that the dual of the dual of the given problem is the primal problem.

#2 Consider the linear programming problem

```
Maximize: \mathbf{r}^T \mathbf{x}
Subject to:
A\mathbf{x} = \mathbf{s}
\mathbf{x} \ge \mathbf{0}
```

This problem is in canonical form. Find the dual of this problem, by writing the primal problem in standard form and using your answer to #1. Explain

why the dual involves unrestricted variables.

#3 Find the dual of the linear programming problem:

```
Minimize: -3x_1 + 2x_2 + x_4
Subject to:
2x_1 + x_2 + x_3 + 2x_4 \ge 7
x_2 + 3x_4 = 5
x_1, x_2 \ge 0, x_3 \le 0, x_4 unrestricted.
```

#4~ Use the revised simplex method to solve the linear programming problem

Maximize: $2x_1 + x_2 + 3x_3 + x_6 + 2x_7 + 3x_8$ Subject to: $2x_1 + x_2 + x_4 + 3x_5 + x_7 \le 24$ $x_1 + 3x_3 + x_4 + x_5 + 2x_6 + 3x_8 \le 30$ $5x_1 + 3x_2 + 3x_4 + 2x_5 + x_7 + 5x_8 \le 18$ $3x_1 + 2x_2 + x_3 + x_6 + 3x_8 \le 20$ $x_1, \dots, x_8 \ge 0.$

Give the current B^{-1} and the current list of basic variables at each step.

#5 Consider the linear programming problem:

```
Maximize: 4x_1 + 3x_2 + 6x_3
Subject to:
3x_1 - 4x_2 - 6x_3 \le 18
-2x_1 - x_2 + 2x_3 \le 12
x_1 + 3x_2 + 2x_3 \le 1
x_1, x_2, x_3 \ge 0.
```

The optimal solution to this problem is z = 4 at the point $x_1 = 1, x_2 = 0, x_3 = 0$ and the final tableau for the simplex method is:

	x_1	x_2	x_3	x_4	x_5	x_6	
x_4	0	-13	-12	1	0	-3	15
x_5	0	5	6	0	1	2	14
x_1	1	3	2	0	0	1	1
	0	9	2	0	0	4	4

(a) State the dual problem and find its optimal solution

(b) Find all values of Δc_2 such that the solution above remains optimal.

(c) Find all values of Δc_5 such that the solution above remains optimal.

(d) Find the optimal solution of the problem obtained by changing c_6 to 3. (e) Suppose the final tableau is obtained from the initial tableau by multiplying by B^{-1} . Find B^{-1} .

(f) Find the optimal solution to the problem obtained by changing the constant term in the third constraint (\mathbf{b}_3) from 1 to 5.

(g) Find the optimal solution to the problem obtained by changing the constant term in the third constraint (\mathbf{b}_3) from 1 to 7.

(h) A further constraint $x_2 + x_3 \ge 1$ is added to the original problem. Use the dual simplex method to find an optimal solution to this new problem (if one exists).

(i) A different further constraint $2x_1 + x_2 \leq 1$ is added to the original problem (not to the modified problem in (h)). Use the dual simplex method to find an optimal solution to this new problem (if one exists).

#6 Find an optimal solution to the following pure integer programming problem.

Maximize: $x_1 + 3x_2$ Subject to: $x_1 - 2x_2 \ge 0$ $x_1 + 2x_2 \le 42$ $x_1, x_2 \ge 0, x_1, x_2$ integers #7 $\,$ Find an optimal solution to the following pure integer programming problem.

Maximize: $x_1 + 2x_2 + x_3 + x_4$ Subject to: $2x_1 + x_2 + 3x_3 + x_4 \le 8$ $2x_1 + 3x_2 + 4x_4 \le 12$ $3x_1 + x_2 + 2x_3 \le 18$ $x_1, x_2, x_3, x_4 \ge 0, x_1, x_2, x_3, x_4$ integers