## Review problems for Final Exam

December 12, 2007
\#1 Find $(78,2340)$ and write it in the form $78 a+2340 b$ where $a$ and $b$ are integers.
$\# 2$ Find $[12]^{-1}$ in $\mathbf{Z}_{25}$.
$\# 3$ Let $R$ be a ring and $A, B$ be ideals in $R$. Let $A+B$ denote $\{a+b \mid a \in A, b \in B\}$.
(a) Prove that $A+B$ is an ideal in $R$.
(b) Recall that if $n \in \mathbf{A}$, then $(n)$ denotes $\{n k \mid k \in \mathbf{Z}\}=n \mathbf{Z}$. Prove that any ideal in $\mathbf{Z}$ is equal to $(n)$ for some $n \in \mathbf{Z}, n \geq 0$.
(c) Let $m, n \in \mathbf{Z}, m, n>0$. Prove that $(m)+(n)=((m, n))$. (Recall that $(m, n)$ denotes the greatest common divisor of $m$ and $n$.)
\#4 Find all the ideals in $\mathbf{Z}_{10} \times \mathbf{Z}$. Which of these are prime ideals? Which of these are maximal ideals?
\#5 Find $\left[x^{2}+x+1\right]^{-1}$ in $\mathbf{Q}[x] /\left(x^{3}+2\right)$.
$\# 6$ Find $\left(x^{3}+2 x^{2}-x-2, x^{4}-1\right)$ in $\mathbf{Q}[x]$ and exrpess it in the form $\left(x^{3}+2 x^{2}-x-2\right) a+$ $\left(x^{4}-1\right) b$ where $a, b \in \mathbf{Q}[x]$.
$\# 7$ (a) Let $R=\left\{A \in M_{2}(\mathbf{R})|A| \begin{array}{c}1 \\ -1\end{array}\left|=\left|\begin{array}{l}0 \\ 0\end{array}\right|\right\}\right.$. Show that $A$ is a subring of $M_{2}(\mathbf{R})$ but that $A$ is not an ideal.
(b) Let $S=\left\{\left.B \in M_{2}(\mathbf{R})|B| \begin{array}{c}1 \\ -1\end{array}|\in \mathbf{R}| \begin{array}{c}1 \\ -1\end{array} \right\rvert\,\right\}$. Show that $S$ is a subring of $M_{2}(\mathbf{R})$.
(c) Show that $R$ is an ideal in $S$ and that $S / R$ is isomorphic to $\mathbf{R}$.
\#8 Let $F$ be a field and $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots$ be ideals of $F[x]$. Show that there is some $k$ such that $I_{k}=I_{k+1}=\ldots$.
\#9 (a) Is $x^{5}+3 x^{4}+6 x^{2}-9 x+3$ irreducible over $\mathbf{Q}$ ? Why or why not?
(b) Is $x^{5}+x^{4}+1$ irreducible over $\mathbf{Z}_{2}$ ? Why or why not?
$\# 10$ Let $R$ be a ring and $I$ be an ideal in $R$. Prove that every subring of $R / I$ has the form $J / I$ where $J$ is a subring of $R$ which contains $I$. Also show that $J$ is an ideal in $R$ if and only if $J / I$ is an ideal in $R / I$.
$\# 11$ Let $G$ be a group and $N$ a normal subgroup of $G$. Prove that every subgroup of $G / N$ has the form $H / N$ where $H$ is a subgroup of $G$ which contains $N$. Also show that $H$ is a normal subgroup of $G$ if and only if $H / N$ is a normal subgroup of $G / N$.
$\# 12$ Let $G$ and $H$ be groups, $N$ be a normal subgroup of $G$, and $f$ be a homomorphism from $G$ to $H$.
(a) Let $e_{G}$ be the identity element of $G, e_{H}$ be the identity element of $H$, and let $g \in G$. Show that $f\left(e_{G}\right)=e_{H}$ and that $f\left(g^{-1}\right)=f(g)^{-1}$.
(b) Show that $\operatorname{ker}(f)$ is a normal subgroup of $G$.
(c) Show that $f(G)$ is a subgroup of $H$.
(d) Give an example to show that $f(N)$ does not have to be a normal subgroup of $H$.
(e) Show that if $f$ is surjective then $f(N)$ is a normal subgroup of $f(G)$.
\#13 Write $(137562)(234)(57)$ as a product of disjoint cycles.
$\# 14$ (a) Find $\sigma \in S_{8}$ such that $\sigma(87654321)=(12345678)$.
(b) Find $\tau \in S_{8}$ such that $\tau(87654321) \tau^{-1}=(12345678)$.
\#15 Let $C(n)$ denote the cyclic group of order $n$.
(a) Show that $C(5) \times C(6)$ is isomorphic to $C(30)$.
(b) Show that $C(2) \times C(8)$ is not isomorphic to $C(8)$
\#16 (a) Can $S_{10}$ contain an element of order 14 ? Why or why not?
(b) Can $S_{10}$ contain an element of order 16? Why or why not?
$\# 17$ Let $G$ be a group, $H$ be a subgroup of $G$, ad $a, b \in G$.
(a) Show that either $H a=H b$ or $H a \cap H b=\emptyset$.
(b) Show that $|H a|=|H b|$.
(c) Suppose $|G|$ is finite. Prove that $|H|$ divides $|G|$.
$\# 18$ (a) Let $R=\mathbf{Z}[\sqrt{7}]$. Show that the quotient field of $R$ is isomorphic to $\mathbf{Q}[\sqrt{7}]$.
(b) Prove that $\mathbf{Q}[\sqrt{7}]$ is a Euclidean domain with $\delta(a+b \sqrt{7})=a^{2}+7 b^{2}$.
\#19 Let $G$ be a group and $H, K$ be subgroups of $G$. Assume $H K=K H$.
(a) Show that $H K$ is a subgroup of $G$.
(b) Is $H$ a normal subgroup of $H K$ ? (Think about subgroups of $S_{3}$.)
(c) Suppose $H \cap K=\{e\}$ and $h k=k h$ for all $h \in H, k \in K$. Prove that $H K$ is isomorphic to $H \times K$.
$\# 20$ Let $K=\{f \in \mathbf{C}[x] \mid f(-2)=0\}$ and $L=\{g \in \mathbf{C}[x] \mid g(-2)=g(5)=0\}$.
(a) Show that $K$ and $L$ are ideals in $\mathbf{C}[x]$.
(b) What is the quotient $\mathbf{C}[x] / K$ ?
(c) What is the quotient $\mathbf{C}[x] / L$ ?

