
POLYNOMIAL EQUATIONS OVER MATRICES

Robert Lee Wilson

Here are two well-known facts about polynomial equations over the complex num-
bers (C):

(I) (Vieta Theorem) For any complex numbers x1, ..., xn (not necessarily distinct),
there is a unique monic polynomial over C

f(x) = xn + an−1x
n−1 + ...+ a1x+ a0

= (x− x1)...(x− xn)

such that the equation f(x) = 0 has roots x1, ..., xn (counting multiplicities). Then

an−i = (−1)i
∑

j1<...<ji

xj1 ...xji .

(II) (Fundamental Theorem of Algebra) The equation over C

xn + an−1x
n−1 + ...+ a1x+ a0 = 0

has a root. Consequently, it has exactly n roots (counting multiplicities).
This article describes the similar statements that can be made about a polynomial

equation
Xn +An−1X

n−1 + ...+A1X +A0 = 0

over Mk(C), the algebra of k by k matrices over C. For simplicity I will assume n = 2
and k = 2. All the results can be extended to general n and k, but the notation
gets more complicated. Such problems for polynomials of low degree (particularly
for n = 2) have been treated by several authors since they arise naturally in control
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theory and in functional analysis. See, for example, [GHR,LR]. For general n, the
solution of the diagonalizable case is due to Fuchs and Schwarz [FS].

The differences between the situation for equations over the complex numbers
and the situation for equations over matrices arise for two reasons: multiplication in
Mk(C) is not commutative and not all matrices in Mk(C) are invertible.

Analogues of the Vieta Theorem
Let X1 and X2 be roots of the quadratic equation X2 + A1X + A0 = 0 over any
algebra (not necessarily commutative - e.g., Mk(C)).

Then we have

X2
1 +A1X1 +A0 = 0

and
X2

2 +A1X2 +A0 = 0.

Taking the difference gives

X2
1 −X2

2 +A1(X1 −X2) = 0.

Replace
X2

1 −X2
2

by
X1(X1 −X2) + (X1 −X2)X2.

(This is the noncommutative version of the well-known formula u2−v2 = (u+v)(u−v)
that holds in the commutative case.) We obtain

X1(X1 −X2) + (X1 −X2)X2 +A1(X1 −X2) = 0.

Thus

(1) −A1(X1 −X2) = X1(X1 −X2) + (X1 −X2)X2.

This has two consequences:
First, if X1−X2 is invertible we may multiply on the right by its inverse and obtain

−A1 = X1 + (X1 −X2)X2(X1 −X2)−1.

To make this look nicer, write
y1 = X1
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and

y2 = (X1 −X2)X2(X1 −X2)−1.

Then

−A1 = y1 + y2

and

A0 = −X2
1 −A1X1 = −y2

1 + y2
1 + y2y1.

In other words:

A1 = −(y1 + y2)

and

A0 = y2y1.

These are close analogues of the formulas in the commutative case, but they involve
rational functions, not just polynomials. This generalization of the Vieta Theorem
(which can be extended to equations of degree n by using the theory of quasideter-
minants) is due to Gelfand and Retakh [GR1,GR2].

Second, equation (1) may be rewritten as

(2) −(X1 +A1)(X1 −X2) = (X1 −X2)X2.

Now work in M2(C) and take

X1 =

[
1 1
0 0

]
, X2 =

[
0 1
0 0

]
.

Then

(X1 −X2)X2 =

[
1 0
0 0

] [
0 1
0 0

]
=

[
0 1
0 0

]
.

But the rows of the matrix

−(X1 +A1)(X1 −X2)

must be contained in the row space of the matrix

X1 −X2 =

[
1 0
0 0

]
.
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Thus it is impossible to satisfy (2) and hence there is no quadratic equation over
M2(C) with roots [

1 1
0 0

]
,

[
0 1
0 0

]
.

Solutions of polynomial equations- how many solutions can there be?
Some examples:

(1) X2 −
[

0 1
0 0

]
= 0 has no solution.

To see this, suppose that

[
a b
c d

]
is a solution and observe that

[
a b
c d

]2

=

[
a2 + bc b(a+ d)
c(a+ d) bc+ d2

]
.

If this is equal to

[
0 1
0 0

]
, then a + d 6= 0. But c(a + d) = 0, so c = 0. But then

(comparing the entries on the diagonal) a2 = d2 = 0, so a = d = 0, a contradiction.
We will return to this example later and see another, less computational, way to

analyze it.
(2) X2 = 0 has infinitely many solutions

For example,

[
0 x
0 0

]
is a solution for any x ∈ C.

(3) X2 −
[

1 0
0 4

]
= 0 has four solutions:

X =

[
±1 0
0 ±2

]
.

It is clear that these four matrices are solutions. To see that there are no other

solutions, let X =

[
a b
c d

]
. Then, as before

X2 =

[
a2 + bc b(a+ d)
c(a+ d) bc+ d2

]
.

If this is equal to

[
1 0
0 4

]
, then

0 = b(a+ d) = c(a+ d).
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If a + d 6= 0, then b = c = 0, a2 = 1, d2 = 4, giving the four solutions listed. If
a + d = 0, then a = −d and so a2 = d2. But then, 1 = a2 + bc = bc + d2 = 4, a
contradiction.

(4) X2 −
[

1 0
0 1

]
= 0 has infinitely many solutions.

The same analysis as in (3) shows that

X =

[
a b
c −a

]

is a solution whenever a2 + bc = 1. If b = c, these are just the matrices of reflections
in C2.

Here is a question we will answer: For what values of l is there a quadratic equation

X2 +A1X +A0 = 0

with exactly l solutions? So far, we know that there is such an equation if l = 0, 4, or
∞. We have not yet seen the answer for l = 1, 2, 3, 5, 6, 7, 8, ...

We want to find all solutions to

(3) X2 +A1X +A0 = 0.

First we need to think about how we can specify a solution X. There are several ways
to do this:

(a) Write down the entries of X, e.g., X =

[
2 −1
−1 2

]
.

(b) Write down X

[
1
0

]
(the first column of X) and X

[
0
1

]
(the second column of

X). E.g.,

X

[
1
0

]
=

[
2
−1

]

and

X

[
0
1

]
=

[
−1
2

]

describes the same matrix as in (a).
(c) Write down Xv1 and Xv2 for any basis {v1,v2} of C2. E.g.,

X

[
1
1

]
=

[
1
1

]
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and

X

[
1
−1

]
=

[
3
−3

]

describes the same matrix as in (a) and (b).
(d) Write down a basis {v1,v2} for C2 consisting of eigenvectors for X and specify

the corresponding eigenvalue for each eigenvector. (Recall that a nonzero vector v
is an eigenvector for X with corresponding eigenvalue λ if Xv = λv.) Note that

requiring that

[
1
1

]
be an eigenvector for X with corresponding eigenvalue 1 and that

[
1
−1

]
be an eigenvector for X with corresponding eigenvalue 3 describes the same

matrix as in (a), (b) and (c). Note that replacing vi by civi where c1, c2 6= 0 describes
the same matrix. Thus, if we let

S = {
[

1
u

]
|u ∈ C} ∪ {

[
0
1

]
}

we may assume that the eigenvectors are chosen from S. It is important to note that
not every matrix can be described in this way. The matrices that can be described
this way are called diagonalizable matrices.
Diagonalizable solutions

We can now find all diagonalizable solutions to equation (3). Let X be such a
solution and let v be an eigenvector for X with corresponding eigenvalue λ. Then

0 = 0v = (X2 +A1X +A0)v = X2v +A1Xv +A0v

= λ2v + λA1v +A0v = (λ2I + λA1 +A0)v.

This is equivalent to requiring that

det(λ2I + λA1 +A0) = 0

and

v ∈ Null (λ2I + λA1 +A0).

Thus λ is a root of the equation

det(t2I + tA1 +A0) = 0,
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a fourth degree equation. Each of its roots is a possible eigenvalue for X and the
corresponding eigenvectors may be taken from the nonzero elements of

S ∩Null (λ2I + λA1 +A0).

Now the matrix
t2I + tA1 +A0

is a matrix with entries in C[t]. A general result (rational canonical form) says that

P (t)(t2I + tA1 +A0)Q(t) =

[
f1(t) 0

0 f2(t)

]

where P (t) and Q(t) are invertible matrices over C[t], detP (t) = detQ(t) = 1 and
f1(t), f2(t) are monic polynomials in t with f1(t) dividing f2(t). (The polynomial
f1(t) is the greatest common divisor of all of the entries of the matrix t2I+ tA1 +A0.)
Then det(t2I + tA1 + A0) = f1(t)f2(t) and λ is a root of det(t2I + tA1 + A0) = 0 if
and only if (t− λ)|f2(t). Furthermore, if

(t− λ)|f1,

then λ2I + λA1 +A0 = 0 and so

Null (λ2I + λA1 +A0) = C2.

If (t− λ) 6 | f1 but (t− λ)|f2(t), then

Null (λ2I + λA1 +A0) = Span {Q(λ)

[
0
1

]
}

is a one-dimensional subspace.
We can now describe how to find all diagonalizable solutions of equation (3). Denote

the roots of det(t2I + tA1 +A0) = 0 by λi, 1 ≤ i ≤ m where 1 ≤ m ≤ 4.
First suppose f1(t) = 1. Then, for any i, 1 ≤ i ≤ m we have

dim Null (λ2
i I + λiA1 +A0) = 1.

Therefore this space is spanned by a single vector of S. Denote this vector by vi.
Then, for any pair (i, j), 1 ≤ i < j ≤ m with vi 6= vj , there is a solution X to
equation (3) such that vi is an eigenvector with eigenvalue λi and vj is an eigenvector
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with eigenvalue λj . Every diagonalizable solution to equation (3) arises in this way.

Note that in this case there are at most 6 =
(

4
2

)
diagonalizable solutions.

Next suppose f1(t) = 0 has a single root λ1. Then, m ≤ 3 (for f2(t) = 0 has at
most three roots, one of which is λ1). In this case,

dim Null (λ2
1I + λ1A1 +A0) = 2

and

dim Null (λ2
i I + λiA1 +A0) = 1

for 2 ≤ i ≤ m. Therefore, Null (λ2
i I + λiA1 +A0) is spanned by a single vector of S.

Denote this vector by vi. Now, since

Null (λ2
1I + λ1A1 +A0) = C2,

λ1I is a solution. Also, if 2 ≤ i ≤ m, if v1 ∈ S and v1 6= vi, there is a solution
X to equation (3) such that v1 is an eigenvector for X with eigenvalue λ1 and vi is
an eigenvector for X with eigenvalue λi. Here there are infinitely many choices for
v1 and hence infinitely many solutions. In addition, if v2 6= v3, there is a solution
X to equation (3) such that v2 is an eigenvector for X with eigenvalue λ2 and v3 is
an eigenvector for X with eigenvalue λ3. Every diagonizable solution to equation (3)
arises in this way. Notice that in this case there are infinitely many diagonalizable
solutions if and only if m > 1.

Finally, suppose f1(t) = 0 has two roots λ1 and λ2. Then f1(t) = f2(t) and λ1 and
λ2 are the only roots of

det(λ2I + λA1 +A0) = 0.

Furthermore,

dim Null (λ2
i I + λiA1 +A0) = 2, 1 ≤ i ≤ 2.

Then λ1I, λ2I are solutions and for any pair (v1,v2) of distinct elements of S there is
a solution X to equation (3) such that v1 is an eigenvector for X with eigenvalue λ1

and v2 is an eigenvector for X with eigenvalue λ2. Every diagonalizable solution to
equation (3) arises in this way. In this case there are infinitely many diagonalizable
solutions.

This discussion goes over without serious change to the case of equations of degree
n over Mk(C). The maximum finite number of diagonalizable solutions becomes

(
nk
k

)
.

This maximum finite number of diagonalizable solutions (and the analysis of the
problem using eigenvectors and eigenvalues) is due to Fuchs and Schwarz [FS].
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Examples: (1) Find all diagonalizable solutions of X2 −
[

0 1
0 0

]
= 0.

The possible eigenvalues are the roots of

0 = det(t2I −
[

0 1
0 0

]
) = t4.

Thus 0 is the only possible eigenvalue. The possible eigenvectors are the nonzero
elements of

Null

[
0 1
0 0

]
.

These are just the nonzero multiples of

[
1
0

]
. Thus we cannot find a basis for C2

consisting of eigenvectors for X, and so there are no diagonalizable solutions.

(2) Find all diagonalizable solutions of X2 = 0.
The possible eigenvalues are the roots of

0 = det(t2I) = t4

so, again, 0 is the only possible eigenvalue. The possible eigenvectors are the nonzero
elements of the nullspace of the zero matrix, i.e., all nonzero vectors in C2. Thus we
may take any basis for C2 and declare that both elements of the basis are eigenvectors
with corresponding eigenvalues 0. This means that X is the zero matrix. Thus there
is only one diagonalizable solution.

(3) Find all diagonalizable solutions of X2 −
[

1 0
0 4

]
= 0.

The possible eigenvalues are the roots of

0 = det(t2I −
[

1 0
0 4

]
) = det(

[
t2 − 1 0

0 t2 − 4

]
)

= (t2 − 1)(t2 − 4) = (t− 1)(t+ 1)(t− 2)(t+ 2).

Thus the possible eigenvalues are 1,−1, 2, and −2. If 1 or −1 is an eigenvalue, the

corresponding eigenvector must be a nonzero element in Null

[
0 0
0 −3

]
, that is, a

nonzero multiple of

[
1
0

]
. If 2 or −2 is an eigenvalue, the corresponding eigenvector
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must be a nonzero element of Null

[
3 0
0 0

]
, that is, a nonzero multiple of

[
0
1

]
. Thus,

in determining X there are two choices (1 and −1) for the eigenvalue to assign to

[
1
0

]

and two choices (2 and −2) for the eigenvalue to assign to

[
0
1

]
. Thus there are four

diagonalizable solutions.

(4) Find all diagonalizable solutions of X2 −
[

1 0
0 1

]
= 0.

The possible eigenvalues are the roots of

0 = det(t2I −
[

1 0
0 1

]
) = det(

[
t2 − 1 0

0 t2 − 1

]
) = (t2 − 1)(t2 − 1) = (t− 1)2(t+ 1)2.

Thus the possible eigenvalues are 1 and −1. In either case, any vector in S is a possible
eigenvector. Thus we may choose {v1,v2} to be any pair of distinct elements of S,
and declare both elements to be eigenvectors for 1. This gives the identity matrix. We
may also declare both elements to be eigenvectors for −1. This gives −I. But we may
also declare v1 to be an eigenvector corresponding to 1 and v2 to be an eigenvector
corresponding to −1. There are infinitely many ways to do this, so there are infinitely
many solutions. (Note that if we choose an orthogonal basis for C2 this procedure
produces the matrix of a reflection.)
Non-diagonalizable solutions

It is well-known that if a k by k matrix has k distinct eigenvalues, then the matrix
is diagonalizable. Thus if a 2 by 2 matrix is not diagonalizable, it can have only one
eigenvalue.

Note that if
X2 +A1X +A0 = 0

and if we set
Y = X + rI

then
Y 2 + (A1 − 2rI)Y + (r2I − rA1 +A0) = 0.

Since λ is an eigenvalue of X if and only if r+λ is an eigenvalue of Y , we may assume,
by replacing X by X + rI for an appropriate r, that 0 is an eigenvalue of X.

Since we are assuming that 0 is an eigenvalue of X we have that 0 is the only
eigenvalue of X. This implies that X2 = 0 (for the characteristic polynomial of
X must be t2 and by the Cayley-Hamilton Theorem, X satisfies its characteristic
polynomial).
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Hence it is sufficient to consider nilpotent solutions of

X2 +A1X +A0 = 0.

Since we are assuming that X is not diagonalizable, X 6= 0. Hence there is a linearly
independent set {v1,v2} such that

Xv1 = 0

and
Xv2 = v1.

Then
0 = 0v1 = (X2 +A1X +A0)v1

= X2v1 +A1Xv1 +A0v1 = A0v1

and
0 = 0v2 = (X2 +A1X +A0)v2

= X2v2 +A1Xv2 +A0v2 = A1v1 +A0v2

Recall that C[t] denotes the algebra of polynomials in t with coefficients from the
complex numbers. Let (t2) denote the ideal in C[t] generated by t2, that is, the set
of all polynomials divisible by t2. Then the quotient algebra

C[t]/(t2)

denotes the algebra of polynomials where we set t2 = 0. We write

(C[t]/(t2))2

for the set of all [
g1(t)
g2(t)

]

where g1(t), g2(t) ∈ C[t]/(t2). Note that M2(C[t]) acts on (C[t]/(t2))2 by matrix
multiplication. Note also that we may write any element in (C[t]/(t2))2 uniquely in
the form w1 + tw2 where w1,w2 ∈ C2.

Now let v1,v2 be as above; that is,

0 = A0v1
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and

0 = A1v1 +A0v2

Note that this is equivalent to

(4) (t2I + tA1 +A0)(v1 + tv2) = 0

in (C[t]/(t2))2.
Recall that

P (t)(t2I + tA1 +A0)Q(t)

=

[
f1(t) 0

0 f2(t)

]
)

where P (t) and Q(t) are invertible matrices over C[t], detP (t) = detQ(t) = 1 and
f1(t), f2(t) are monic polynomials in t with f1(t) dividing f2(t). The same decompo-
sition holds over C[t]/(t2).

Note that (4) has no solution unless t2|f2(t); therefore, from now on we assume
t2|f2(t).

Note that it t2|f1(t) then our equation is X2 = 0 and the set of solutions is the set
of all nilpotent matrices.

After setting t2 = 0, the left-hand column of Q(t) may be written as p1 + tp2 and
the right-hand column may be written as q1 + tq2, where p1,p2,q1,q2 ∈ C2. Note
that {p1,q1} is linearly independent, since p1 and q1 are the columns of the invertible
matrix Q(0).

If f1(t) = t, then the set of solutions of (4) is

Q(t)

[
t
0

]
+Q(t)

[
0
1

]
+Q(t)

[
0
t

]

= Span {tp1,q1 + tq2, tq1}.

Thus there is a solution X with

X(ap1 + q2) = q1, X(q1) = 0

whenever {ap1 + q2,q1} is linearly independent. Since {p1,q1} is linearly indepen-
dent, there are infinitely many such solutions.
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If t 6 |f1(t), then (4) has solution

Q(t)

[
0
1

]
+Q(t)

[
0
t

]
= Span{q1 + tq2, tq1}.

If {q1,q2} is linearly independent there is a unique nilpotent solution X with Xq2 =
q1, Xq1 = 0. If {q1,q2} is linearly dependent, there is no nilpotent solution.

Example: Find all nilpotent solutions of

X2 −
[

0 1
0 0

]
= 0.

We write [
1 0
t2 1

] [
t2 −1
0 t2

] [
0 1
−1 t2

]

=

[
1 0
0 t4

]
.

Thus

q1 =

[
1
0

]
,q2 = 0

Since the set

{0,
[

1
0

]
}

is linearly dependent, there is no nilpotent solution.

Example: Find all nilpotent solutions of

X2 +

[
1 0
0 −1

]
X +

[
0 1
0 0

]
= 0.

Here [
1 0

−t2 + t 1

] [
t2 + t 1

0 t2 − t

] [
0 −1
1 t2 + t

]

=

[
1 0
0 t4 − t2

]
.

Thus

q1 =

[
−1
0

]
,q2 =

[
0
1

]
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and so there is a unique nilpotent solution.

How many solutions can there be?

We can now answer our earlier question: How many solutions can the equation

X2 +A1X +A0 = 0

have?
We have seen that if this equation has a finite number of solutions, then the number

of diagonalizable solutions is at most
(
m
2

)
where m is the number of distinct roots of

(5) det(t2I + tA1 +A0) = 0.

We have also seen that the equation can have a nilpotent solution if and only if 0 is
a root of (5) with multiplicity greater than 1. Furthermore, the number of nilpotent
solutions is 0, 1 or ∞.

Therefore, if (5) has four distinct roots and the number of solutions is finite, this
number is at most 6. If (5) has a single repeated root (which we may assume to be 0)
and the number of solutions is finite, there is at most 1 non-diagonalizable solution
and 3 =

(
3
2

)
diagonalizable solutions. Finally, if (5) has two repeated roots and

the number of solutions is finite, there are at most two non-diagonalizable solutions
(one corresponding to each root of (5)). Also, m = 2, so there is at most 1 =

(
2
2

)

diagonalizable solution. Thus, in any case, the maximum possible finite number of
solutions is 6.

The following examples show that for each l = 0, 1, 2, 3, 4, 5, 6,∞ there is an equa-
tion with exactly l solutions. Each example may be analyzed using the methods
above.
Examples:

(0) X2 +

[
0 1
0 0

]
= 0 has no solutions.

(1a) X2 +

[
1 0
0 0

]
X +

[
0 1
0 0

]
= 0 has a unique (nilpotent) solution.

We have

det

[
t2 + t 1

0 t2

]
= t3(t+ 1),

and so the possible eigenvalues for a solution X are 0 and −1. The possible eigenvec-

tors corresponding to 0 are the nonzero elements in the null space of

[
0 1
0 0

]
. The
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only element of S in this space is

[
1
0

]
. The possible eigenvectors corresponding to

−1 are the nonzero elements in the null space of

[
0 1
0 1

]
. The only element of S in

this space is

[
1
0

]
. Therefore there is no diagonalizable solution.

Now

[
1 0
−t2 1

] [
t2 + t 1

0 t2

] [
0 −1
1 t2 + t

]
=

[
1 0
0 t4 + t3

]
. Thus

q1 =

[
−1
0

]
,q2 =

[
0
1

]

and so there is a unique nilpotent solution

[
0 −1
0 0

]
.

(1b) X2 +

[
2 0
0 0

]
X +

[
1 0
0 0

]
= 0 has a unique (diagonalizable) solution.

We have

det

[
t2 + 2t+ 1 0

0 t2

]
= t2(t+ 1)2,

and so the possible eigenvalues for a solution X are 0 and −1. The possible eigenvec-

tors corresponding to 0 are the nonzero elements in the null space of

[
1 0
0 0

]
. The

only element of S in this space is

[
0
1

]
.The possible eigenvectors corresponding to −1

are the nonzero elements in the null space of

[
0 0
0 1

]
. The only element of S in this

space is

[
1
0

]
. Thus there is a unique diagonalizable solution

[
−1 0
0 0

]
.

Now
[

1 1
−(2t+ 3)t2 1− (2t+ 3)t2

] [
(t+ 1)2 0

0 t2

] [
1− 2t −t2
2t+ 3 (t+ 1)2

]

=

[
1 0
0 t2(t+ 1)2

]
.

Thus

q1 =

[
0
1

]
,q2 =

[
0
2

]
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and so there is no nilpotent solution.
A non-diagonalizable solution X of this equation with eigenvalue -1 of multiplicity 2

would correspond (upon replacing X by X+I) to a nilpotent solution of the equation

X2 −
[

0 0
0 2

]
X +

[
0 0
0 1

]
. Since

[
1 1

1 + (2t− 3)t2 (2t− 3)t2

] [
t2 0
0 (t− 1)2

] [
−2t+ 3 (t− 1)2

1 + 2t −t2
]

=

[
1 0
0 t2(t− 1)2

]
.

Thus, in this case,

q1 =

[
1
0

]
,q2 =

[
−2
0

]

and so there is no nilpotent solution. Therefore there is no non-diagonalizable solution
with eigenvalue −1 of the original equation.

(2) X2 +X +

[
0 1
0 0

]
= 0 has two solutions, neither of which is diagonalizable.

We have

det

[
t2 + t 1

0 t2 + t

]
= t2(t+ 1)2,

and so the possible eigenvalues for a solution X are 0 and −1. The possible eigenvec-

tors corresponding to 0 are the nonzero elements in the null space of

[
0 1
0 0

]
. The

only element of S in this space is

[
1
0

]
. The possible eigenvectors corresponding to

−1 are the nonzero elements in the null space of

[
0 1
0 1

]
. The only element of S in

this space is

[
1
0

]
. Thus there are no diagonalizable solutions.

Now
[

1 0
−t2 − t 1

] [
t2 + t 1

0 t2 + t

] [
0 −1
1 t2 + t

]
=

[
1 0
0 t2(t+ 1)2

]
.

Thus

q1 =

[
−1
0

]
,q2 =

[
0
1

]
,
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and so there is a unique nilpotent solution

[
0 −1
0 0

]
.

A non-diagonalizable solution X of this equation with eigenvalue -1 of multiplicity 2
would correspond (upon replacing X by X+I) to a nilpotent solution of the equation

X2 −X +

[
0 1
0 0

]
. Since

[
1 0

−t2 + t 1

] [
t2 − t 1

0 t2 − t

] [
0 −1
1 t2 − t

]
=

[
1 0
0 t2(t− 1)2

]
.

Thus, in this case,

q1 =

[
−1
0

]
,q2 =

[
0
−1

]

and so there is unique nilpotent solution

[
0 1
0 0

]
. This corresponds to the solution

[
−1 1
0 −1

]

of the original equation. This is the unique non-diagonalizable solution with eigenvalue
−1.

(3) X2 +

[
1 −1
0 −1

]
X +

[
0 1
0 0

]
= 0 has three solutions, one nilpotent and two diag-

onalizable.
We have

det

[
t2 + t 1− t

0 t2 − t

]
= t2(t+ 1)(t− 1),

and so the possible eigenvalues for a solution X are 0, 1,−1. The possible eigenvectors

corresponding to 0 are the nonzero elements in the null space of

[
0 1
0 0

]
. The only

element of S in this space is

[
1
0

]
. The possible eigenvectors corresponding to 1 are

the nonzero elements in the null space of

[
2 0
0 0

]
. The only element of S in this space

is

[
0
1

]
. The possible eigenvectors corresponding to −1 are the nonzero elements in

17



the null space of

[
0 2
0 2

]
. The only element of S in this space is

[
1
0

]
.Thus there are

two diagonalizable solutions:

[
0 0
0 1

]
and

[
−1 0
0 1

]
.

Now
[

1 0
−(t3 + t2 − 2t)/2 1

] [
t2 + t 1− t

0 t2 − t

] [
1
2 t− 1

1 + t
2 t2 + t

]
=

[
1 0
0 t2(t+ 1)(t− 1)

]
.

Thus,

q1 =

[
−1
0

]
,q2 =

[
1
1

]
,

and so there is a unique nilpotent solution

[
0 −1
0 0

]
.

(4) X2 −
[

1 0
0 4

]
= 0 has four (diagonalizable) solutions.

We have

det

[
t2 − t 0

0 t2 − 4t

]
= (t− 1)(t+ 1)(t− 2)(t+ 2).

Since this factors into distinct linear factors, all solutions are diagonalizable. We have
found these solutions above.

(5) X2 +

[
−3 −2
0 1

]
X +

[
2 −2
0 0

]
= 0 has five (diagonalizable) solutions.

We have

det

[
t2 − 3t+ 2 −2t− 2

0 t2 + t

]
= t(t− 1)(t+ 1)(t− 2),

and so the possible eigenvalues for a solution X are 0, 1,−1, 2. The possible eigen-

vectors corresponding to 0 are the nonzero elements in the null space of

[
2 −2
0 0

]
.

The only element of S in this space is

[
1
1

]
. The possible eigenvectors corresponding

to 1 are the nonzero elements in the null space of

[
0 −4
0 2

]
. The only element of S

in this space is

[
1
0

]
. The possible eigenvectors corresponding to −1 are the nonzero

elements in the null space of

[
6 0
0 0

]
. The only element of S in this space is

[
0
1

]
. The
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possible eigenvectors corresponding to 2 are the nonzero elements in the null space of[
0 −6
0 6

]
. The only element of S in this space is

[
1
1

]
. The 5 diagonalizable solutions

correspond to the pairs of eigenvalues (0, 1), (0,−1), (−1, 1), (−1, 2), (1, 2).

(6) X2 −
[

1 −1
2 1

]
X +

[
−2 1
4 −2

]
= 0 has six (diagonalizable) solutions.

We have

det

[
t2 − t− 2 t+ 1
−2t+ 1 t2 − t− 2

]
= t(t− 1)(t+ 1)(t− 2),

and so the possible eigenvalues for a solution X are 0, 1,−1, 2. The possible eigen-

vectors corresponding to 0 are the nonzero elements in the null space of

[
−2 1
4 −2

]
.

The only element of S in this space is

[
1
2

]
. The possible eigenvectors corresponding

to 1 are the nonzero elements in the null space of

[
−2 2
2 −2

]
. The only element of S

in this space is

[
1
1

]
. The possible eigenvectors corresponding to −1 are the nonzero

elements in the null space of

[
0 0
6 0

]
. The only element of S in this space is

[
0
1

]
. The

possible eigenvectors corresponding to 2 are the nonzero elements in the null space

of

[
0 3
0 0

]
. The only element of S in this space is

[
1
0

]
. There is a diagonalizable

solution corresponding to each pair of distinct possible eigenvalues. Thus the pair

(0, 1) corresponds to

[
2 −1
2 −1

]
; the pair (0,−1) corresponds to

[
0 0
2 −1

]
; the pair

(1,−1) corresponds to

[
1 0
2 −1

]
; the pair (−1, 2) corresponds to

[
2 0
0 −1

]
; the pair

(1, 2) corresponds to

[
2 −1
0 1

]
; and the pair (0, 2) corresponds to

[
2 −1
0 0

]
.

(∞) X2 = 0 has infinitely many solutions.
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