
MATH 354-03 May 6, 2005

Solutions to practice questions for Final Exam

#1 A lawn products company has 80 tons of nitrate and 50 tons of phos-
phate to use in producing three types of fertilizer. ”Regular lawn” fertilizer
requires 4 tons of nitrate and 2 tons of phosphate per 1000 bags. ”Super
lawn” fertilizer requires 4 tons of nitrate and 3 tons of phosphate per 1000
bags. ”Garden” fertilizer requires 2 tons of nitrate and 2 tons of phosphate
per 1000 bags. The profit per 1000 bags of fertilizer is $300 for ”regu-
lar lawn” fertilizer, $500 for ”super lawn” fertilizer, and $400 for ”garden”
fertilizer.

(a) Set up a linear programming model of this situation. State explicitly
what each of your variables (for example, x1, x2, ...) represents).

(b) Use the simplex method to find an optimal solution to this problem.

Solution: (a) Let x1 represent the number of thousands of bags of ”regular
lawn”, x2 represent the number of thousands of bags of ”super lawn”, and x3

represent the number of thousands of bags of ”garden”. Then the problem
may be stated as:

Maximize: 300x1 + 500x2 + 400x3

Subject to:

4x1 + 4x2 + 2x3 ≤ 80

2x1 + 3x2 + 2x3 ≤ 50

x1, x2, x3 ≥ 0.

(b) After adding slack vaiables x4 and x5, the initial tableau is




300 500 400 0 0
4 4 2 1 0 80
2 3 2 0 1 50
−300 −500 −400 0 0 0


 .

Pivot first on the (2, 2) position to get
1
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


300 500 400 0 0
4
3 0 −2

3 1 −4
3

40
3

2
3 1 2

3 0 1
3

50
3

100
3 0 −200

3 0 500
3

25000
3


 .

Now pivot on the (2, 3) position to get




300 500 400 0 0
2 1 0 1 −1 30
1 3

2 1 0 1
2 25

100 200 0 0 200 10000


 .

As all entries in the objective row are positive, this tableau gives the optimal
solution: x1 = x2 = 0, x3 = 25.

#2 A manufacturer has distribution centers located in Atlanta (A), Chicago
(C), and New York (NY). These centers have available 40, 20, and 40 units of
his product, respectively. His retail outlets require the following number of
units: Cleveland (CL)- 25; Louisville (L) - 10; Memphis (M)- 20; Pittsburgh
(P)- 30; and Richmond (R)- 15. The shipping cost per unit in dollars
between each center and outlet is given in the following table:

C L M P R
A 55 30 40 50 40
C 35 30 100 45 60
NY 40 60 95 35 30

.

(a) Set up a linear programming model of this situation. State explicitly
what each of your variables (for example, x1, x2, ...) represents.

(b) Use the algorithm for the transportation problem to find an optimal
solution.

Solution: (a) Designate the distribution centers by the numbers 1 for
Atlanta, 2 for Chciago and 3 for New York. Designate the retail outlets
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by the numbers 1 for Cleveland, 2 for Louisville, 3 for Memphis, 4 for
Pittsburgh, and 5 for Richmond.

There are fifteen variables denoted xi,j where 1 ≤ i ≤ 3, 1 ≤ j ≤ 5. The
variable xi,j denotes the number of units to be shipped from distribution
center i to retail outlet j.

minimize: 55x1,1 + 30x1,2 + 40x1,3 + 50x1,4 + 40x1,5 + 35x2,1 + 30x2,2 +
100x2,3 + 45x2,4 + 60x2,5 + 40x3,1 + 60x3,2 + 95x3,3 + 35x3,4 + 30x3,5

subject to:
x1,1 + x1,2 + x1,3 + x1,4 + x1,5 ≤ 40
x2,1 + x2,2 + x2,3 + x2,4 + x2,5 ≤ 20
x3,1 + x3,2 + x3,3 + x3,4 + x3,5 ≤ 40
x1,1 + x2,1 + x3,1 ≥ 25
x1,2 + x2,2 + x3,2 ≥ 10
x1,3 + x2,3 + x3,3 ≥ 20
x1,4 + x2,4 + 35x3,4 ≥ 30
x1,5 + x2,5 + x3,5 ≥ 15
xi,j ≥ 0 and integral for all i,j.
Note that since the total demand is equal to the total supply (both are

100) we may replace the inequalities in the supply and demand constraints
by equalities.

(b) Using the minimum cost rule produces an initial feasible solution:
x1,2 = 10, x1,3 = 20, x1,5 = 10;
x2,1 = 20;
x3,1 = 5, x3,4 = 30, x3,5 = 5.

Setting vi + wj = ci,j whenever xi,j is a basic variable gives:
v1 + w2 = 30, v1 + w3 = 40, v1 + w5 = 40;
v2 + w1 = 35;
v3 + w1 = 40, v3 + w4 = 35, v3 + w5 = 30.

Setting v1 = 0 and solving for the remaining vi and wj gives:
v1 = 0, v2 = −15, v3 = −10
w1 = 50, w2 = 30, w3 = 40, w4 = 45, w5 = 40.

Then, for each non-basic variable xi,j we have zi,j = vi + wj . Thus we
compute
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z1,1 − c1,1 = 0 + 50− 55 = −5

z1,4 − c1,4 = 0 + 45− 50 = −5

z2,2 − c2,2 = −15 + 30− 30 = −15

z2,3 − c2,3 = −15 + 40− 100 = −75

z2,4 − c2,4 = −15 + 45− 45 = −15

z2,5 − c2,5 = −15 + 40− 60 = −25

z3,2 − c3,2 = −10 + 30− 60 = −40

z3,3 − c3,3 = −10 + 40− 95 = −65.

Since all the zi,j − ci,j ≤ 0, the solution is optimal. (If some zi,j − ci,j had
been > 0 we would proceed as described beginning on page 308 of the text.

#3 Problem #1 of Section 4.1.

Solution: Let x denote the number of machines of type A purchased and
y denote the number of machines of type B purchased. Then the problem
may be modeled as:

Minimize: 22000x + 48000y

Subject to:

100x+ 200y ≥ 600

50x+ 140y ≤ 350

x, y ≥ 0 and integral.

#4 In each part, sketch the feasible region, find all extreme points of the
feasible region, and sketch lines with equation z = k for several values of k.
Explain, on the basis of your sketch, whether the problem is feasible or not
and whether or not it has an optimal solution. If it has an optimal solution,
find it.

(a) Maximize z = x1 + 32

subject to

x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3

4x1 + 3x2 ≥ 12

x1, x2 ≥ 0.
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(b) Maximize z = x1 + 3x2

subject to

−x1 + x2 ≤ 1

2x1 − x2 ≥ 2

x1, x2 ≥ 0.

(c) Maximize z = x1 + 32

subject to

−x1 + x2 ≤ 1

2x1 − x2 ≤ 2

x1, x2 ≥ 0.

Solution: (a) The feasible region is empty, so there are no extreme points
and there is no optimal solution.

(b) There are two extreme points , (1, 0) and (3, 4). The lines −x1 +x2 =
1

2x1 − x2 = 2 intersect at (3, 4) and the feasible region is the region
between these lines above and to the right of (3, 4). The equations z = k
have slope −1

3 and x2-intercept k
3 . These lines intersect the feasible region

for all k ≥ 1, so there is no optimal solution (as the problem is unbounded).

(c) The extreme points are (0, 0), (1, 0), (0, 1) and (3, 4). The feasible
region is the quadrilateral whose vertices are the extreme points. The line
z = k are the same as in part (b), and the largest value of k for which this
intersects the feasible region is 15. Thus the optimal solution is z = 15 at
x1 = 3, x2 = 4.

#5 Use the two-phase simplex method to solve each of the following linear
programming problems.

(a) Maximize z = x1 + x2

subject to

2x1 − 3x2 ≥ 6

−x1 + 2x2 ≥ 4

x1, x2 ≥ 0.
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(b) Maximize z = −x1 − x2

subject to
2x1 − 3x2 ≥ 6
−x1 + 2x2 ≥ 4
x1, x2 ≥ 0.

(c) Maximize z = 2x1 + x2 + x3

subject to
x1 + x2 + x3 = 3
x1 + 2x2 − 2x3 = 5
x1, x2, x3 ≥ 0.

Solution: (a) After introducing slack variables x3, x4 and artificial vari-
ables y1, y2 we see that the problem for Phase I is
Minimize y1 + y2

subject to
2x1 − 3x2 − x3 + y1 = 6
−x1 + 2x2 − x4 + y2 = 4
x1, x2, x3, x4, y1, y2 ≥ 0.

Now minimizing y1 +y2 is the same as maximizing −y1−y2 and −y1−y2 =
(2x1− 3x2− x3− 6) + (−x1 + 2x2− x4− 4) = x1− x2− x3− x4− 10. Thus
the initial tableau for Phase I is:




1 −1 −1 −1
2 −3 −1 0 1 0 6
−1 2 0 −1 0 1 4
−1 1 1 1 0 0 −10


 .

Applying the simplex method, we pivot on the (1, 1) position and obtain
the new tableau




1 −1 −1 −1
1 −3

2
−1
2 0 1

2 0 3

0 1
2

−1
2 −1 1

2 1 7

0 −1
2

1
2 1 1

2 0 −7


 .
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Applying the simplex method again, we pivot on the (2, 2) position and
obtain




1 −1 −1 −1
1 0 −2 −3 2 3 24
0 1 −1 −2 1 2 14
0 0 0 0 1 1 0


 .

The basic variables are now x1 and x2 so we have eliminated the artificial
variables from our solution, completing Phase I. The initial tableau for
Phase II is obtained by deleting the columns corresponding to the artificial
variables from the final tableau for Phase I and entering the values for the
objective function given in the statement of the problem and computing the
corresponding entries (zj − cj) in the objective row. Thus it is




1 1 0 0
1 0 −2 −3 24
0 1 −1 −2 14
0 0 −3 −5 0


 .

Note that the objective row contains the negative entry −5 and that all
entries above this are negative. Thus there is no optimal solution (the
problem is unbounded).

(b) Note that the constraints in (b) are the same as in (a). Thus Phase
I of the simplex method for (b) will be the same as Phase I for (a) and
so (using the new values for the objective function) the initial tableau for
Phase II will be



−1 −1 0 0
1 0 −2 −3 24
0 1 −1 −2 14
0 0 3 5 0


 .

Since all the values in the objective row are ≥ 0, the current solution (x1 =
24, x2 = 14 is optimal.

(c) After adding artificial variables y1 and y2 we obtain the following
problem for Phase I:
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Minimize y1 + y2

subject to

x1 + x2 + x3 + y1 = 3

x1 + 2x2 − 2x3 + y2 = 5

x1, x2, x3, y1, y2 ≥ 0.

Since minimizing y1 +y2 is the same as maximizing −y1−y2 and −y1−y2 =
(x1x2 + x3− 3) + (x1 + 2x2− 2x3− 5) = 2x1 + 3x2− x3− 8 we see that the
initial tableau for Phase I is




2 3 −1
1 1 1 1 0 3
1 2 −2 0 1 5
−2 −3 1 0 0 −8


 .

Applying the simplex method, we pivot on the (2, 2) position and obtain




2 3 −1
1
2 0 2 1 −1

2
1
2

1
2 1 −1 0 1

2
5
2

−1
2 0 −2 0 3

2
−1
2


 .

Applying the simplex method again, we pivot on the (1, 3) position and
obtain




2 3 −1
1
4 0 1 1

2
−1
4

1
4

3
4 1 0 1

2
1
4

11
4

0 0 0 1 1 0


 .

The basic variables are now x2 and x3 so we have eliminated the artificial
variables from our solution, completing Phase I. The initial tableau for
Phase II is obtained by deleting the columns corresponding to the artificial
variables from the final tableau for Phase I and entering the values for the
objective function given in the statement of the problem and computing the
corresponding entries (zj − cj) in the objective row. Thus it is
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


2 1 1
1
4 0 1 1

4
3
4 1 0 11

4
−1 0 0 3


 .

Applying the simplex method, we pivot on the (1, 1) position and obtain




2 1 1
1 0 4 1
0 1 −3 2
0 0 4 4


 .

All the entries in the objective row are positive, so this tableau gives an
optimal solution: x1 = 1, x2 = 2, x3 = 0.

#6 In the matrix below, the (i, j) entry represents the capacity of the
(directed) arc from node i to node j in a network. Use the labeling algorithm
to find the maximal flow from the source (node 1) to the sink (node 10).
Also find a minimal cut.




0 7 6 7 0 0 0 0 0 0
0 0 0 0 5 5 0 0 0 0
0 0 0 0 0 0 4 0 0 0
0 0 0 0 4 0 0 0 3 0
0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 7 0 0
0 0 0 0 0 0 0 0 6 8
0 0 0 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0 0 12
0 0 0 0 0 0 0 0 0 0




.

Solution: We will use the labeling algorithm. I suggest you draw diagrams
(which I do not know how to do for a web-site posting).

We start with the trivial initial feasible solution: xi,j = 0 for all i, j.
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Then the excess capacities are:
d1,2 = 7, d2,1 = 0 d1,3 = 6, d3,1 = 0 d1,4 = 7, d4,1 = 0 d2,5 = 5, d5,2 = 0

d2,6 = 5, d6,5 = 0 d3,7 = 4, d7,3 = 0 d4,5 = 4, d5,4 = 0 d4,9 = 3, d9,4 = 0
d5,8 = 6, d8,5 = 0 d6,8 = 7, d8,6 = 0 d7,9 = 6, d9,7 = 0 d7,10 = 8, d10,7 = 0
d8,10 = 6, d10,8 = 0 d9,10 = 12, d10,9 = 0

We now start labeling nodes. We may label a node when it is not already
labeled and it is connected to a previously labeled node (say node a) by an
arc with positive excess capacity. (There are frequently several nodes we
could label; we pick one arbitrarily.) We label the node with a pair (u, a)
where u the the extra amount we could send to the node through node a
(that is, the minimum of the amount node a is labeled with and the excess
capacity of the arc from node a. In this problem, we may label node 2 with
the pair (7, 1) (indicating that we can send 7 more units to node 2 from
node 1.This allow us to label node 6 with (5, 2), then to label node 8 with
(5, 6) and to label node 10 (the sink) with (5, 8). Since the sink is now
labeled, we can increase the flow by following the indicated path (sending
5 units from node 1 to node 2 to node 6 to node 8 to node 10. We now
update our list of excess capacities, getting
d1,2 = 2, d2,1 = 5 d1,3 = 6, d3,1 = 0 d1,4 = 7, d4,1 = 0 d2,5 = 5, d5,2 = 0

d2,6 = 0, d6,5 = 5 d3,7 = 4, d7,3 = 0 d4,5 = 4, d5,4 = 0 d4,9 = 3, d9,4 = 0
d5,8 = 6, d8,5 = 0 d6,8 = 2, d8,6 = 5 d7,9 = 6, d9,7 = 0 d7,10 = 8, d10,7 = 0
d8,10 = 1, d10,8 = 5 d9,10 = 12, d10,9 = 0

Now we may label node 4 with (7, 1), node 9 with (3, 4) and node 10 with
(3, 9). Thus we can increase the flow by sendding 3 units from node 1 to
node 4 to node 9 to node 10. We again update our list of excess capacities,
getting
d1,2 = 2, d2,1 = 5 d1,3 = 6, d3,1 = 0 d1,4 = 4, d4,1 = 3 d2,5 = 5, d5,2 = 0

d2,6 = 0, d6,5 = 5 d3,7 = 4, d7,3 = 0 d4,5 = 4, d5,4 = 0 d4,9 = 0, d9,4 = 3
d5,8 = 6, d8,5 = 0 d6,8 = 2, d8,6 = 5 d7,9 = 6, d9,7 = 0 d7,10 = 8, d10,7 = 0
d8,10 = 1, d10,8 = 5 d9,10 = 9, d10,9 = 3

We may label node 3 with (6, 1), node 7 with (4, 3) and node 10 with
(4, 7). Thus we can increase the flow by sending 4 units from node 1 to
node 3 to node 7 to node 10. We again update our list of excess capacities,
getting
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d1,2 = 2, d2,1 = 5 d1,3 = 2, d3,1 = 4 d1,4 = 4, d4,1 = 3 d2,5 = 5, d5,2 = 0
d2,6 = 0, d6,5 = 5 d3,7 = 0, d7,3 = 4 d4,5 = 4, d5,4 = 0 d4,9 = 0, d9,4 = 3
d5,8 = 6, d8,5 = 0 d6,8 = 2, d8,6 = 5 d7,9 = 6, d9,7 = 0 d7,10 = 4, d10,7 = 4
d8,10 = 1, d10,8 = 5 d9,10 = 9, d10,9 = 3

We may label node 2 with (2, 1), node 5 with (2, 2), node 8 with (2, 6)
and node 10 with (1, 8). Thus we can increase the flow by sending 1 unit
from node 1 to node 2 to node 6 to node 8 to node 10. We again update
our list of excess capacities, getting
d1,2 = 1, d2,1 = 6 d1,3 = 2, d3,1 = 4 d1,4 = 4, d4,1 = 3 d2,5 = 4, d5,2 = 1

d2,6 = 0, d6,5 = 5 d3,7 = 0, d7,3 = 4 d4,5 = 4, d5,4 = 0 d4,9 = 0, d9,4 = 3
d5,8 = 5, d8,5 = 1 d6,8 = 2, d8,6 = 5 d7,9 = 6, d9,7 = 0 d7,10 = 4, d10,7 = 4
d8,10 = 0, d10,8 = 6 d9,10 = 9, d10,9 = 3

We can now label node 2 with (1, 1), node 3 with (2, 1), node 4 with
(4, 1), node 5 with (4, 4), node 6 with (1, 2) and node 8 with (1, 6). We
cannot label nodes 7, 9, 10. We now list all the arcs connecting a labeled
node to an unlabeled node. These are the arcs from 3 to 7, from 4 to 9,
and from 8 to 10. Theses arcs form a cut of value 4 + 3 + 6 = 13. This is
also the value of our flow, so the flow
x1,2 = 6 x1,3 = 4 x1,4 = 3 x2,5 = 1 x2,6 = 5 x3,7 == 4 x4,9 = 3 x5,8 = 1

x6,8 = 5 x7,10 = 4 x8,10 = 6 x9,10 = 3
is optimal.
#7 Convert the following linear programming problem to standard form.
Then write the dual problem (using unrestricted variables and equalities
where appropriate).
Minimize: x1 − 3x2 + 4x3

Subject to
x1 − 2x2 + x3 = 7
2x1 + 5x2 + 3x3 ≥ 5
x1, x2 ≥ 0, x3 unrestricted.

Solution: In standard form (writing x3 = x+
3 − x−3 )the problem is

Maximize: −x1 + 3x2 − 4x+
3 4x−3

Subject to
x1 − 2x2 + x+

3 − x−3 ≤ 7
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−x1 + 2x2 − x+
3 + x−3 ≤ −7

−2x1 − 5x2 − 3x+
3 + 3x−3 ≤ −5

x1, x2, x
+
3 , x

−
3 ≥ 0.

Then the dual problem is

Minimize: 7w1 − 7w2 − 5w3

Subject to:

w1 − w2 − 2w3 ≥ −1

−2w1 + 2w2 − 5w3 ≥ 3

w1 − w2 − 3w3 ≥ −4

−w1 + w2 + 3w3 ≥ 4

w1, w2, w3 ≥ 0.

By setting w4 = w1 − w2 and combining the last two constraints into a
single inequality we may write the dual problem as

Minimize: 7w4 − 5w3

Subject to:

w4 − 2w3 ≥ −1

−2w4 − 5w3 ≥ 3

w4 − 3w3 = −4

w3 ≥ 0, w4 unrestricted.

#8 Consider the linear programming problem:

Maximize: 4x1 + 3x2 + 6x3

Subject to:

3x1 − 4x2 − 6x3 ≤ 18

−2x1 − x2 + 2x3 ≤ 12

x1 + 3x2 + 2x3 ≤ 1

x1, x2, x3 ≥ 0.

Use the revised simplex method to solve this problem, giving the values
of B−1 and xB at each step and computing the zj−cj from this information
at each step.

Solution: After adding slack variables, the initial tableau is



13




4 3 6 0 0 0
3 −4 −6 1 0 0 18
−2 −1 2 0 1 0 12
1 3 2 0 0 1 1
−4 −3 −6 0 0 0 0


 .

Initially, B−1 =




1 0 0
0 1 0
0 0 1


 ,xB =



x4

x5

x6


 =




18
12
1


 .

We pivot on the (3, 2) position. Thus we perform row operations to

change



−6
2
2


 to




0
0
1


 . Then we get the new valuesB−1 =




1 0 3
0 1 −1
0 o 1

2


 ,xB =



x4

x5

x6


 =




21
11
1
2


 , cB =




0
0
6


 . Then cBB

−1 = [ 0 0 3 ], so [ z1 ... z6 ] =

[ 3 9 6 0 0 3 ] . Thus [ z1 − c1 ... z6 − c6 ] = [−1 6 0 0 0 3 ] .
This means that we must pivot on the first column. Thus we need to com-

pute t1 = B−1A1 =




6
−3
1
2


 . Then the θ-ratio for the first entry is 21

6 and

for the third entry is 1. Thus we pivot on the (3, 1) position. This means

that we need to change




6
−3
1
2


 to




0
0
1


.

Then we get the new values B−1 =




1 0 −3
0 1 2
0 0 1


 ,xB =



x4

x5

x1


 =




15
14
1


 , cB =




0
0
4


 , cTBB−1 = [ 0 0 4 ] , so [ z1 ... z6 ] = [ 4 12 8 0 0 4 ] .

Thus [ z1 − c1 ... z6 − c6 ] = [ 0 9 2 0 0 34 ] . Since all the zj − cj
are ≥ 0, the current solution is optimal.
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#9 Solve problem #7 of Section 4.2 using
(a) the cutting plane method;
(b) the branch and bound method.

Solution: For either (a) or (b) we begin by solving the problem without
the integrality constraints. After adding slack variables, the initial tableau
is




5 2 0 0
12 −7 1 0 84
6 10 0 1 69
−5 −2 0 0 0


 .

We first pivot on the (1, 1) position to get




5 2 0 0
1 −7

12
1
12 0 7

0 27
2

−1
2 1 27

0 −59
12

5
12 0 35


 .

We then pivot on the (2, 2) position to get




5 2 0 0
1 0 10

162
7

162
49
6

0 1 −6
162

12
162 2

0 0 38
162

59
162

269
6


 .

Thus the optimal solution without the integrality constraints is

x1 =
49

6
, x2 = 2, z =

269

6
.

(a) We now impose the cutting plane constraint

10

162
x3 −

7

162
x4 + u1 = −1

6
.

This gives the tableau
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


5 2 0 0 0
1 0 10

162
7

162 0 49
6

0 1 −6
162

12
162 0 2

0 0 −10
162

−7
162 1 −1

6

0 0 38
162

59
162 0 269

6



.

Using the dual simplex method, we pivot on the (3, 3) position to get




5 2 0 0 0
1 0 0 0 1 8
0 1 0 1

10
−6
10

21
10

0 0 1 1
10

−162
10

27
10

0 0 0 2
10

38
10

442
10



.

Next we impose the cutting plane constraint

− 1

10
x4 −

4

10
u1 + u2 = 1

1

10
.

This gives the tableau




5 2 0 0 0 0
1 0 0 0 1 0 8
0 1 0 1

10
−6
10 0 21

10

0 0 1 1
10

−162
10 0 27

10

0 0 0 −1
10

−4
10 1 −1

10

0 0 0 2
10

38
10 0 442

10



.

Using the dual simplex method, we pivot on the (4, 4) position to get




5 2 0 0 0 0
1 0 0 0 1 0 8
0 1 0 0 −1 1 2
0 0 1 0 −19 7 2
0 0 0 1 4 −10 1
0 0 0 0 3 2 44



.
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Hence the optimal solution to the integer programming problem is x =
8, y = 2, z = 44.

(b) To apply the brach and bound method, we start with the final tableau
for the problem without the integrality constraints.




5 2 0 0
1 0 10

162
7

162
49
6

0 1 −6
162

12
162 2

0 0 38
162

59
162

269
6


 .

As noted before the optimal solution to this problem is

x1 =
49

6
, x2 = 2, z =

269

6
.

We will now add either the constraint x1 ≥ 9 or the constraint x1 ≤ 8.
We will treat the case where we add the constraint x1 ≥ 9 first. We may
write this as x1 − u1 ≥ 9 or as −x1 + u1 = −9. This gives us the tableau




5 2 0 0 0
1 0 10

162
7

162 0 49
6

0 1 −6
162

12
162 0 2

0 0 10
162

7
162 1 −5

6

0 0 38
162

59
162 0 269

6



.

Since the last entry in the third row is negative and all the other entries
are ≥ 0, this problem is infeasible (by the dual simplex method).

We now treat the case where we add the constraint x1 ≤ 8. We may
write this as x1 + u1 = 8. This gives us the tableau




5 2 0 0 0
1 0 10

162
7

162 0 49
6

0 1 −6
162

12
162 0 2

0 0 −10
162

−7
162 1 −1

6

0 0 38
162

59
162 0 269

6



.

Using the dual simplex method we pivot on the (3, 3) position and obtain



17




5 2 0 0 0
1 0 0 0 1 8
0 1 0 1

10
−6
10

21
10

0 0 1 1
10

−162
10

27
10

0 0 0 2
10

38
10

442
10



.

This gives the (non-integral) solution x = 8, y = 21
10 , z = 442

10 . Therefore
we will impose either the constraint y ≤ 2 or the constraint y ≥ 3.

We will treat the case where we add the constraint y ≤ 2 first. We may
write this as y + u2 = 2. This gives the tableau




5 2 0 0 0 0
1 0 0 0 1 0 8
0 1 0 1

10
−6
10 0 21

10

0 0 1 1
10

−162
10 0 27

10

0 0 0 −1
10

6
10 1 −1

10

0 0 0 2
10

38
10 0 442

10



.

Using the dual simplex method we pivot on the (4, 4) position and obtain




5 2 0 0 0 0
1 0 0 0 1 0 8
0 1 0 0 −1 1 2
0 0 1 0 −19 7 2
0 0 0 1 4 −10 1
0 0 0 0 3 2 44



.

This gives the integral solution x = 8, y = 2, z = 44.

We still need to consider the case where we add the constraint y ≥ 3.
We may write this as y−u2 = 3 or as−y+u2 = −9. This gives the tableau
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


5 2 0 0 0 0
1 0 0 0 1 0 8
0 1 0 1

10
−6
10 0 21

10

0 0 1 1
10

−162
10 0 27

10

0 0 0 1
10

−6
10 1 −9

10

0 0 0 2
10

38
10 0 442

10



.

Using the dual simplex method we pivot on the (4, 5) entry we obtain




5 2 0 0 0 0
1 0 0 1

6 0 10
6

13
2

0 1 0 0 0 −1 3
0 0 1 −2 0 −27 27
0 0 0 −1

6 1 −10
6

3
2

0 0 0 5
6 0 38

6
77
3



.

This gives a (non-integral) solution x = 13
2 , y = 3, z = 77

2 . Since the value
of the objective function is less than the value of the objective function for
a previously obtained integral solution we do not need to consider this case
further. Therefore the optimal solution to the integer programming problem
is x = 8, y = 2, z = 44.

#10 Solve the assignment problem with matrix




1 2 3 4 5 6
3 5 7 2 4 6
1 4 3 2 9 4
2 1 1 3 5 7
8 6 2 4 9 3
5 5 7 8 4 2



.

Solution: We create at least one zero in every row and in every column by
subtracting 1 from every entry in the first row, 2 from every entry in the
second row, 1 from every entry in the thire row, 1 from every entry in the
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fourth row, 2 from every entry in the fifth row, 2 from every entry in the
sisth row and 2 from every entry in the fifth column. This gives the matrix




0 1 2 3 2 5
1 3 5 0 0 4
0 3 2 1 6 3
1 0 0 2 2 6
6 4 0 2 5 1
3 3 5 6 0 0



.

Marking zeros in the usual fashion gives the matrix




0∗ 1 2 3 2 5
1 3 5 0∗ 0 4
0 3 2 1 6 3
1 0∗ 0 2 2 6
6 4 0∗ 2 5 1
3 3 5 6 0∗ 0



.

Note that there is no marked zero in the third row. Then the path
starting at the (3, 1) position and going to the (1, 1) position is maximal
and ends at a marked zero. Therefore the first column and the second,
fourth, fifth and sixth rows are necessary. Subtracting 1 from every entry
that is in neither a necessary row nor a necessary column and adding 1 to
every entry that is in both a necessary row and a necessary column gives
the matrix




0 0 1 2 1 4
2 3 5 0 0 4
0 2 1 0 5 2
2 0 0 2 2 6
7 4 0 2 5 1
4 3 5 6 0 0



.

Marking zeros gives
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


0∗ 0 1 2 1 4
2 3 5 0∗ 0 4
0 2 1 0 5 2
2 0∗ 0 2 2 6
7 4 0∗ 2 5 1
4 3 5 6 0∗ 0



.

There is still no marked zero in the third row. Starting with the zero
in the (3, 1) position we construct the path going from (3, 1) to (1, 1) to
(1, 2), to (4, 2) to (4, 3) to (5, 3). This ends at a marked zero. If the third
column is deleted, the path cannot be extended past (4, 2) and if the second
column is deleted the path cannot be extended past (1, 1). Thus the first
three columns will be necessary. However, there is another zero in the third
row (in the (3, 4) position. Starting at this position we can construct a
path from (3, 4) to (2, 4) to (2, 5) to (6, 5) to (6, 6). This path ends at an
unmarked zero, so remove the marks from all marked zeros on this path
and mark all the unmarked zeros on the path. This gives the matrix




0∗ 0 1 2 1 4
2 3 5 0 0∗ 4
0 2 1 0∗ 5 2
2 0∗ 0 2 2 6
7 4 0∗ 2 5 1
4 3 5 6 0 0∗



.

There is now one mark in each row (and in each column). The corre-
sponding optimal solution is x1,1 = x2,5 = x3,4 = x4,2 = x5,3 = x6,6 = 1,
all other xi,j = 0. The value of the objective function is 12.
#11 State and prove the Weak Duality Theorem.

Solution: The Weak Duality Theorem states that if x0 is a feasible solution
of the primal problem
Maximize: cTx
Subject to:
Ax ≤ b
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x ≥ 0
and w0 is a feasible solution of the dual problem
Minimize: bTw
Subject to:
ATw ≥ c
w ≥ 0

then cTx0 ≤ bTw0.
The proof consists of showing that

cTx0 ≤ wT
0 Ax0 ≤ bTw0.

The first inequality holds since ATw0 ≥ c and so, since x0 ≥ 0, we have
xT0 A

Tw0 ≥ xT0 c. The second inequality holds since Ax0 ≤ b and so, since
w0 ≥ 0, we have wT

0 Ax0 ≤ wT
0 b = bTw0.

#12 Consider the linear programming problem in standard form:
Maximize cTx
subject to
Ax ≤ b
x ≥ 0.
State and prove the principle of complementary slackness relating the

optimal solutions of this problem and the dual problem.

Solution: Suppose that A is m by n and that m slack variables are added
so that the first constraint becomes

[A I ]

[
x
x′

]
= b.

Let

[
x0

x′0

]
be an optimal solution to the primal problem, where x′ =




xn+1

.

.

.
xn+m


 . Let w0 =




w1

.

.

.
wm


 be an optimal solution the dual problem.
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The Principle of Complimentary Slackness states that xn+iwi = 0 for all
i, 1 ≤ i ≤ m. (In words, if the i-th slack variable is non-zero then the i-th
dual variable is equal to zero.) See page 179 of the text for a proof.

#13 Explain how the vi and wj used in the solution of the transportation
problem are related to the dual problem and why they may be used to
compute the zj − cj .

Solution: Let A be the (m by n) coefficient matrix for the transportation
problem when it is written out as a linear programming problem in stan-
dard form. Convert this problem to canonical form by adding m+ n slack
variables, and suppose that the tableau corresponding to some basic feasible
solution x is obtained from the original tableau by multiplying by a marix
B−1. Then for each i, 1 ≤ i ≤ m and j, 1 ≤ j ≤ n there is a column (which I
will denote by A(i, j) with a 1 in the row corresponding to the i-th demand
constraint, a 1 in the row corresponding to the j-th demand constraint
and 0 in all other positions. The corresponding entry in the objective row
(which I will denote by z(i, j) will be cTx = cTBxB = cTBB

−1A(i, j). Let
the vi be the dual variables corresponding to the supply constraints (that
is, corresponding to the rows in the matrix defining the problem) and the
wj be the dual variables corresponding to the demand constraints (that is,
corresponding to the columns in the matrix defining the problem). Then

[ v1 . . . vm w1 . . . wm ] = cTBB
−1

and so vi + wj = [ v1 . . . vm w1 . . . wm ]A(i, j)

= cTBB
−1A(i, j) = z(i, j).

$14 Explain what changes can be made in the matrix for an assigment
problem without changing the optimal solution and why these changes can
be made.

Solution: The matrix can be changed by adding some constant to every
entry in a row (or to every entry in a column). Here is the argument that
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shows this for rows: Let A = [ai,j ] be the matrix of the problem. Suppose
a new matrix A′ = [a′i,j ] is obtained from A by adding some constant a to
every entry in the k-th row of A . If x = [xi,j ] is a feasible solution of the
assignment problem, let zA(x denote the value of the objective function for
the problem with matrix A (which is

∑
i,j ai,jxi,j) and zA′(x) denote the

value of the objective function for the problem with matrix A′ (which is∑
i,j a

′
i,jxi, j). Then, since xk,j = 1 for exactly one value of j and is 0 for

all other values of j, we see that zA′(x) = zA(x) + a. Thus x is optimal for
the problem with matrix A if and only if it is optimal for the problem with
matrix A′.

Then for any feasible solution, the value of the objective function will
#15 Consider the linear programming problem

Maximize: x1 + x2 + 2x3 + x4

subject to

−11x1 − 3x3 + 2x4 ≤ 1

7x1 + x2 + 2x3 − x4 ≤ 1

x1, x2, x3, x4 ≥ 0.

(a) Find the optimal solution.

(b) Find all values of ∆c3 such that the optimal solution xB remains
unchanged if the coefficient of x3 in the objective function is replaced by
2 + ∆c3.

(c) Suppose the constant on the right hand side of the first constraint is
replaced by −2. Use your final tableau from part (a) and the dual simplex
method to find the optimal solution to the new problem.

Solution: (a) After adding slack variables, the initial tableau is




1 1 2 1 0 0
−11 0 −3 2 1 0 1

7 1 2 −1 0 1 1
−1 −1 −2 −1 0 0 0


 .

Applying the simplex method, we pivot on the (2, 3) position to get
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


1 1 2 1 0 0
−1
2

3
2 0 1

2 1 3
2

5
2

3
2

1
2 1 −1

2 0 1
2

1
2

0 0 0 −2 0 1 1


 .

Applying the simplex method again, we pivot on the (1, 4) position to get




1 1 2 1 0 0
−1 3 0 1 2 3 5
3 2 1 0 1 2 3
4 6 0 0 4 4 11


 .

Since all the entries in the objective row are positive, the solution x1 =
x2 = 0, x3 = 3, x4 = 5 is optimal.

(b) We may modify the final tableau by changing the entry 2 in the top
row (representing the coefficient of x3 in the objective function by 2 + ∆c3

and making the corresponding changes in the objective row. We get




1 1 2 + ∆c3 1 0 0
−1 3 0 1 2 3 5
3 2 1 0 1 2 3

4 + 3∆c3 6 + 2∆c3 0 0 4 + ∆c3 4 + 2∆c3 11 + ∆c3


 .

This represents an optimal solution if 4 + 3∆c3 ≥ 0, 6 + 2∆c3 ≥ 0, 4 +
∆c3 ≥ 0, and 4 + 2∆c3 ≥ 0. This is equivalent to ∆c3 ≥ −4

3 .

(c) Note that the final tableau is B−1 times the initial tableau where

B−1 =

[
2 3
1 2

]
. Thus if when the change in the constraints is made, the

last column of the final tableau will be replaced by

B−1

[
−2
1

]
=

[
2 3
1 2

] [
−2
1

]
=

[
−1
0

]
.

Thus the tableau becomes
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


1 1 2 1 0 0
−1 3 0 1 2 3 −1
3 2 1 0 1 2 0
4 6 0 0 4 4 −1


 .

Applying the dual simplex method, we pivot on the (1, 1) position and
get




1 1 2 1 0 0
1 −3 0 −1 −2 −3 1
0 11 1 3 7 11 −3
0 18 0 4 12 16 −5


 .

The dual simplex method now shows that the problem is infeasible.


