Math 351

Workshop #1

September 5, 2007

The first problem sketchs a proof of a result you are probably familiar with: the binomial theorem.

#1(a) If $n > i \ge 0$ are integers, define $\binom{n}{i} = \frac{n!}{i!(n-i)!}$. (Recall that n! = (n)(n-1)...(3)(2)(1) if $n \ge 1$ and that 0! = 1.) Prove that for $n \ge i \ge 1$ we have

$$\binom{n}{i} = \binom{n-1}{i} + \binom{n-1}{i-1}$$

and that $\binom{n}{i}$ is an integer.

(b) Let $a, b, n \in \mathbb{Z}, n \ge 0$. Prove that

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}.$$

The next problem uses the binomial theorem to derive a celebrated result. We will see another way to prove this result later in the course (using material of Chapter 7).

#2(a) Let p be a prime and 0 < i < p. Prove that p divides $\binom{p}{i}$.

(b) Let p be a prime and $a, b \in \mathbb{Z}$. Prove that p divides $(a+b)^p - a^p - b^p$.

(c) Prove:

Fermat's Little Theorem: Let p be a prime and $a \in \mathbb{Z}$. Then p divides $a^p - a$.

It is frequently interesting to invetigate whether all the hypotheses of a result are really needed and, if so, why. This explains the next problem.

#3 Does the Fermat's Little Theorem continue to hold if the hypothesis that p is prime is omitted? Justify your answer by giving a proof or an example.

Now some unrelated problems:

#4 Let n be an integer that is not divisible by 2 or 5. Let J_m denote the integer 11...1 where there are m 1's (thus $J_m = 1 + 10 + (10)^2 + ... + (10)^{m-1}$). Prove that n divides J_m for some m.

#5 Let $r, s, t \in \mathbb{Z}$ be such that the only positive integer dividing r, s, and t is 1. Prove that there are integers a, b, c such that ar + bs + ct = 1. (Note that this generalizes the result for two integers that was proved in class.)