The first problem sketchs a proof of a result you are probably familiar with: the binomial theorem.
$\# 1$ (a) If $n>i \geq 0$ are integers, define $\binom{n}{i}=\frac{n!}{i!(n-i)!}$. (Recall that $n!=(n)(n-1) \ldots(3)(2)(1)$ if $n \geq 1$ and that 0 ! $=1$.) Prove that for $n \geq i \geq 1$ we have

$$
\binom{n}{i}=\binom{n-1}{i}+\binom{n-1}{i-1}
$$

and that $\binom{n}{i}$ is an integer.
(b) Let $a, b, n \in \mathbf{Z}, n \geq 0$. Prove that

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}
$$

The next problem uses the binomial theorem to derive a celebrated result. We will see another way to prove this result later in the course (using material of Chapter 7).
\#2(a) Let p be a prime and $0<i<p$. Prove that p divides $\binom{p}{i}$.
(b) Let p be a prime and $a, b \in \mathbf{Z}$. Prove that p divides $(a+b)^{p}-a^{p}-b^{p}$.
(c) Prove:

Fermat's Little Theorem: Let p be a prime and $a \in \mathbf{Z}$. Then p divides $a^{p}-a$.
It is frequently interesting to invetigate whether all the hypotheses of a result are really needed and, if so, why. This explains the next problem.
\#3 Does the Fermat's Little Theorem continue to hold if the hypothesis that p is prime is omitted? Justify your answer by giving a proof or an example.

Now some unrelated problems:
\#4 Let n be an integer that is not divisible by 2 or 5 . Let J_{m} denote the integer $11 \ldots 1$ where there are $m 1^{\prime} s$ (thus $J_{m}=1+10+(10)^{2}+\ldots+(10)^{m-1}$). Prove that n divides J_{m} for some m.
$\# 5$ Let $r, s, t \in \mathbf{Z}$ be such that the only positive integer dividing r, s, and t is 1 . Prove that there are integers a, b, c such that $a r+b s+c t=1$. (Note that this generalizes the result for two integers that was proved in class.)

