The first problem asks you to find all the ideals in the polynomial ring $F[x]$ where F is a field. It is parallel to the determination of all ideals in the ring of integers (parts (a) and (b) of the first workshop problem last week).
$\# 1$ Let F be a field.
(a) Show that, for any polynomial $f(x) \in F[x]$, the set $\{f(x) g(x) \mid g(x) \in F[x]\}=$ $f(x) F[x]$ is an ideal in $F[x]$. We will denote this ideal by $(f(x))$.
(b) Let I be an ideal in $F[x]$. Let P denote the set of integers k such that I contains a polynomial of degree k. Show that if $P=\emptyset$, then $I=(0)$.
(c) Let I be an ideal in $F[x]$ and let P be as in the previous part. Assume $P \neq \emptyset$. Then P contains a smallest element, say n, and I contains a polynomial, say $f(x)$, of degree n. Show that $I=(f(x))$.

The next problem relates sums and intersections of ideals in the ring \mathbf{Z} of integers to the greatest common divisor and the least common multiple. Recall that if I and J are ideals in any ring R, then $I+J$ (defined to be $\{x+y \mid x \in I, y \in J\}$) and $I \cap J$ are ideals in R. Recall also that, by the second isomorphism theorem, the quotient rings $(I+J) / I$ and $J /(I \cap J)$ are isomorphic. Finally, recall that if $n \in \mathbf{Z}$, then (n) denotes $n \mathbf{Z}=\{n k \mid k \in \mathbf{Z}\}$ and that every ideal in \mathbf{Z} is equal to (n) for some n.
\#2 (a) Let a, b be nonzero integers. Define a common multiple of a and b to be an integer c such at a divides c and b divides c. Show that there is a smallest positive common multiple of a and b. This is called the least common multiple of a and b and is denoted by $[a, b]$.
(b) Let a, b be nonzero integers. Then $(a) \cap(b)=(n)$ for some positive integer n. Show that $n=[a, b]$.
(c) Let a, b be nonzero integers. Then $(a)+(b)=(m)$ for some positive integer m. Show that $m=(a, b)$ (the greatest common divisor of a and b).
(d) Let r, s be positive integers with $r \mid s$, say $s=q r$. Show that the quotient ring $(r) /(s)$ contains exactly q elements.
(e) Let a, b be positive integers. Apply the second isomorphism theorem to the ideals $(a) \cap(b)$ and $(a)+(b)$ in \mathbf{Z} and use part (d) to conclude that $(a, b)[a, b]=a b$.

