The first problem asks you to find all the ideals in two important rings: \mathbf{Z}, the ring of integers, and $M(\mathbf{R})$ the ring of two by two matrices over the real numbers.
\#1 (a) Let I be a ideal in \mathbf{Z}. Show that for any $n \in \mathbf{Z},\{n k \mid k \in \mathbf{Z}\}=n \mathbf{Z}$ is an ideal in \mathbf{Z}. We will denote this ideal by (n).
(b) Let I be a ideal in \mathbf{Z} and let $P=\{k \in I \mid k>0\}$. Show that if $P=\emptyset$, then $I=(0)$ while if $P \neq \emptyset$ and n is the smallest element of P, then $I=(n)$.
(c) For $1 \leq i, j \leq 2$, let $e_{i j}$ denote the matrix in $M(\mathbf{R})$ with 1 in the (i, j) position and 0 in all the other positions. Thus

$$
e_{11}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], e_{12}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], e_{21}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], e_{22}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Let I be an ideal in $M(\mathbf{R})$. Show that if $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \in I$ and $a_{i j} \neq 0$, then $e_{i j} \in I$.
(d) Let I be an ideal in $M(\mathbf{R})$. Show that if $e_{i j} \in I$ for some $1 \leq i, j \leq 2$, then $e_{11} \in I$.
(e) Let I be an ideal in $M(\mathbf{R})$. Show that if $e_{11} \in I$, then $I=M(\mathbf{R})$.
(f) Show that any ideal in $M(\mathbf{R})$ is either $\{0\}$ or $M(\mathbf{R})$.

The second problem asks you (in part (f) after several preliminary steps) to derive an importat result - the Second Isomorphism Theorem.
\#2 Recall that if R is a ring and A, B are two subsets of R, then $A+B$ denotes $\{a+b \mid a \in$ $A, b \in B\}$.
(a) Show that if R is a ring, S is a subring of R and I is an ideal in R, then $S+I$ is a subring of R.
(b) Give an example to show that if R is a ring, and S_{1} and S_{2} are subrings of R then $S_{1}+S_{2}$ is not necessarily a subring of R. (Hint: Try looking as some subrings of $M(\mathbf{R})$.)
(c) Show that if R is a ring, and I and J are ideals in R, then $I+J$ is an ideal in R.
(d) Show that if R is a ring, and I and J are ideals in R, then $I \cap J$ is an ideal in R.
(e) Show that if R is a ring, S is a subring of R and I is an ideal in R, then $S \cap I$ is an ideal in S.
(f) Prove the Second Isomorphism Theorem: If R is a ring, S is a subring of R and I is an ideal in R, then $(S+I) / I$ is isomorphic to $S /(S \cap I)$. (Hint: Show that if $s_{1}, s_{2} \in S, x_{1}, x_{2} \in I$ and $s_{1}+x_{1}=s_{2}+x_{2}$ then $s_{1}+(S \cap I)=s_{2}+(S \cap I)$. Thus we may define a map $f:(S+I) \rightarrow S /(S \cap I)$ by $f(s+x)=s+(S \cap I)$ where $s \in S, x \in I$. Show that f is a homomorphism of $(S+I)$ onto $S /(S \cap I)$ with kernel I and then apply Theorem 6.13.)

