
Math 351
Solutions to review problems for Exam #1 October 8, 2007

Exam #1 will be given during the normal class period on Monday, October 15. It will
cover material through Section 4.4. This set of review problems is about twice as long as
the exam.

#1 Find the greatest common divisor of 561 and 1336 and write it in the form 561a+1336b
where a and b are integers.

Solution: First we note that

1336 = 2(561) + 214 so 214 = 1336− 2(561),

561 = 2(214) + 133 so 133 = 561− 2(214),

214 = 133 + 81 so 81 = 214− 133,

133 = 81 + 52 so 52 = 133− 81,

81 = 52 + 29 so 29 = 81− 52,

52 = 29 + 23 so 23 = 52− 29,

29 = 23 + 6 so 6 = 29− 23,

23 = 3(6) + 5 so 5 = 23− 3(6),

6 = 5 + 1 so 1 = 6− 5,

and

1|.5

Therefore (561, 1336) = 1. Furthermore

1 = 6− 5 = 6− (23− 3(6)) = −23 + 4(6) =

−23 + 4((29− 23) = 4(29)− 5(23) =

4(29)− 5(52− 29) = −5(52) + 9(29) =

−5(52) + 9(81− 52) = 9(81)− 14(52) =

9(81)− 14(133− 81) = −14(133) + 23(81) =

−14(133) + 23(214− 133) = 23(214)− 37(133) =

23(214)− 37(561− 2(214) = −37(561) + 97(214) =

−37(561) + 97(1336− 2(561)) = 97(1336)− 231(561).
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#2 Find the greatest common divisor of the polynomials f(x) = x5 + 2x4 + 8x3 + 16x2 +
11x+ 2 and g(x) = x5 + 11x3 + 2x2 + 28x+ 8 and write it in the form a(x)f(x) + b(x)g(x)
where a(x), b(x) ∈ R[x].

Solution: First we note that

f(x) = g(x) + 2x4 − 3x3 + 14x2 − 17x− 6 so 2x4 − 3x3 + 14x2 − 17x− 6 = f(x)− g(x),

g(x) = (
x

2
+

3

4
)(2x4 − 3x3 + 14x2 − 17x− 6) +

25

4
x3 +

175

4
x+

25

2

so
25

4
x3 +

175

4
x+

25

2
= g(x)− (

x

2
+

3

4
)(2x4 − 3x3 + 14x2 − 17x− 6),

and

(
25

4
x3 +

175

4
x+

25

2
)|(2x4 − 3x3 + 14x2 − 17x− 6).

Therefore

(f(x), g(x)) = x3 + 7x+ 2 =
4

25
(g(x)− (

x

2
+

3

4
)(2x4 − 3x3 + 14x2 − 17x− 6) =

4

25
g(x)− (

2x+ 3

25
)(2x4 − 3x3 + 14x2 − 17x− 6) =

4

25
g(x)− (

2x+ 3

25
)(f(x)− g(x)) = −(

2x+ 3

25
)f(x) + (

2x+ 7

25
)g(x).

#3 Let a, b, and n be integers. State the definition of a ≡ b(mod n) and prove that if
a1 ≡ b1(mod n) and a2 ≡ b2(mod n) then a1a2 ≡ b1b2(mod n).

Solution: The definition is that a ≡ b(mod n) if and only if n|(a − b). Now if a1 ≡
b1(mod n) and a2 ≡ b2(mod n) then n|a1 − b1 so a1 − b1 = k1n for some integer k1 and
n|a2 − b2 so a2 − b2 = k2n for some integer k2. Then a1 = b1 + k1n and a2 = b2 + k2n.
Thus

a1a2 = (b1 + k1n)(b2 + k2n) = b1b2 + (b1k2 + k1b2 + k1k2n)n

and so a1a2 − b1b2 = (b1k2 + k1b2 + k1k2n)n which is a multiple of n, as required.

#4 Let n > 1 be an integer. State the definition of Zn. Using the fact that Z is a ring,
prove that addition in Zn is associative.

Solution: Zn is defined to be the set of all congruence classes [a] where a ∈ Z and

[a] = {b ∈ Z|b ≡ a(mod n)}.

The ring structure is defined on this set by

[x] + [y] = [x+ y]
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and
[x][y] = [xy]

for all integers x and y. The definition of [x][y] makes sense (i.e., does not depend on the
choice of representatives for the congruence classes by the result of the previous problem).
A similar (though easier) argument shows that the definition of [x] + [y] also makes sense.
Now to show that addition in Zn is associative we must show that ([a] + [b]) + [c] =
[a] + ([b] + [c]) for all a, b, c ∈ Z. We begin with the left hand side and write

([a] + [b]) + [c] = [a+ b] + [c] = [(a+ b) + c]

where both equalities follow from the definition of addition in Zn. Now

[(a+ b) + c] = [a+ (b+ c)]

by associativity of addition in Z and

[a+ (b+ c)] = [a] + [b+ c] = [a] + ([b] + [c])

where both equalities follow from the definition of addition in Z. This completes the proof.

$5 Let R,S, T be rings, let f be a homomorphism from R to S and g be a homomorphism
from S to T . Prove that the composition g ◦ f is a homomorphism from R to T .

Solution: Let a, b ∈ R. Then (g ◦ f)(a + b) = g(f(a + b)) = g(f(a) + f(b)) since f is a
homomorphism and g(f(a) + f(b)) = g(f(a)) + g(f(b)) since g is a homomorphism. Thus
(g ◦ f)(a+ b) = (g ◦ f)(a) + (g ◦ f)(b). Similarly, (g ◦ f)(ab) = g(f(ab)) = g(f(a)f(b)) since
f is a homomorphism and g(f(a)f(b)) = g(f(a))g(f(b)) since g is a homomorphism. Thus
(g ◦ f)(ab) = (g ◦ f)(a)(g ◦ f)(b). Thus g ◦ f is a homomorphism.

#6 Let R be a ring, with addition + and multiplication ×R. Define a new multiplication
×op on R by a×op b = b×R a for all a, b ∈ R. Then R with addition + and multiplication
×op is a ring. (You don’t have to verify this.) Show that M(R) is isomorphic to M(R)op.
(Hint: Use the transpose map.)

Solution: Define a map f : M(R) → M(R)op by f(A) = At (the transpose of A) for all
A ∈ M(R). Since (At)t = A we see that f is one-to-one and onto. Thus we only need to
show that f is a homomorphism. Let A,B ∈M(R). Recall two properties of the transpose
(from linear algebra: (A+B)t = At +Bt and (AB)t = BtAt. Then

f(A+B) = (A+B)t = At +Bt = f(A) + f(B)

and (using the symbol ×M(R) to denote multiplication in M(R) and the symbol ×op to
denote multiplication in M(R)op) we have f(A×M(R)B) = (AB)t = BtAt = At×opBt =
f(A)×op f(B). Thus f is an isomorphism.

#7 Let I be an ideal in a ring R and a ∈ R.
(a) State the definition of the coset a+ I and of the quotient ring R/I
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(b) Prove that if a1 + I = b1 + I and a2 + I = b2 + I, then (a1 +a2)+ I = (b1 + b2)+ I.

Solution:
(a) The coset a+ I is defined to be {a+x|x ∈ I} and the quotient ring R/I is defined

to be the set of all cosets of I in R (that is {a+ I|a ∈ R}.) with addition

(a+ I) + (b+ I) = (a+ b) + I

and multiplication
(a+ I)(b+ I) = ab+ I.

(b) This part shows that the definition of addition in R/I given in the previous part
actually makes senes, i.e., the result does not depend on the choice of representative for
the coset. (There is a corresponding result showing that the definition of multiplication
in R/I makes sense.) Let a1 + I = b1 + I and a2 + I = b2 + I. Then a1 ∈ b1 + I and
so a1 = b1 + z1 for some z1 ∈ I. Similarly, a2 ∈ b2 + I and so a2 = b2 + z2 for some
z2 ∈ I. Now suppose y ∈ a1 + a2 + I. Then y = a1 + a2 + x for some x ∈ I and hence
y = (b1 + z1) + (b2 + z2) + x = b1 + b2 + (z1 + z2 + x). Since z1, z2, x ∈ I and I is closed
under addition (since it is an ideal) we have z1 + z2 + x ∈ I and so y ∈ (b1 + b2) + I. Thus
(a1 + a2) + I ⊆ (b1 + b2) + I. The reversed inclusion follows by symmetry and so the proof
is complete.

#8 (a) Is {3n|n ∈ Z} a subring of Z? Why or why not?
(b) Is {3n+ 1|n ∈ Z} a subring of Z? Why or why not.

Solution:
(a) {3n|n ∈ Z} is a subring of Z since it is nonempty (for example, it contains 0), is

closed under subtraction (as 3n1 + 3n2 = 3(n1 + n2)) and multiplication (as (3n1)(3n2) =
3(3n1n2).

(b) {3n + 1|n ∈ Z} is not a subring as it is not closed under addition (for 1 ∈
{3n + 1|n ∈ Z} and 1 + 1 = 2 but 2 6∈ {3n + 1|n ∈ Z}. (An even quicker observation is
that 0 6∈ {3n+ 1|n ∈ Z}.

#9 Let U denote the set of upper triangular matrices in M(R), D denote the set of diagonal
matrices in M(R), and N denote the set of strictly upper triangular matrices in M(R).

(a) Verify that U and D are subrings of M(R).
(b) Verify that N is an ideal in U .

(c) Show that the map f : U → D defined by f(

∣∣∣∣
a b
0 d

∣∣∣∣) =

∣∣∣∣
a 0
0 d

∣∣∣∣ is a homomorphism

of U onto D.
(d) Show that D ∼= U/N.

Solution:
(a) Let a, b, d, a′b′d′ ∈ R. Note that both U and D are nonempty. Also

∣∣∣∣
a b
0 d

∣∣∣∣−
∣∣∣∣
a′ b′

0 d′

∣∣∣∣ =

∣∣∣∣
a− a′ b− b′

0 d− d′
∣∣∣∣
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and ∣∣∣∣
a b
0 d

∣∣∣∣
∣∣∣∣
a′ b′

0 d′

∣∣∣∣ =

∣∣∣∣
aa′ ab′ + b′d
0 dd′

∣∣∣∣

These formulas show that U is closed under subtraction and multiplication and so is a
subring. The same formulas wit b = 0 show that D is closed under subtraction and
multiplication and so is a subring.

(b) Note that N is nonempty. Also the first formula in (a) shows that N is closed
under addition, the second forumla in (a) with a = d = 0 shows that NU ⊆ N , and the
second formula in (a) with a′ = d′ = 0 shows that UN ⊆ N . Thus N is an ideal in U .

(c) Let A ∈ D. Then A =

∣∣∣∣
a 0
0 d

∣∣∣∣ for some a, d ∈ R. But then A ∈ U and f(A) = A.

Thus f is onto. Using the formulas from (a) we see that

f(

∣∣∣∣
a b
0 d

∣∣∣∣+

∣∣∣∣
a′ b′

0 d′

∣∣∣∣) = f(

∣∣∣∣
a+ a′ b+ b′

0 d+ d′

∣∣∣∣ =

∣∣∣∣
a+ a′ 0
0d+ d′

∣∣∣∣ =

∣∣∣∣
a 0
0 d

∣∣∣∣+

∣∣∣∣
a′ 0
0 d′

∣∣∣∣ = f(

∣∣∣∣
a b
0 d

∣∣∣∣) + f(

∣∣∣∣
a′ b′

0 d′

∣∣∣∣).

Also

f(

∣∣∣∣
a b
0 d

∣∣∣∣
∣∣∣∣
a′ b′

0 d′

∣∣∣∣) = f(

∣∣∣∣
aa′ ab′ + b′d
0 dd′

∣∣∣∣ =

∣∣∣∣
aa′ 0
0 dd′

∣∣∣∣ =

∣∣∣∣
a 0
0 d

∣∣∣∣
∣∣∣∣
a′ 0
0 d′

∣∣∣∣ = f(

∣∣∣∣
a b
0 d

∣∣∣∣)f(

∣∣∣∣
a′ b′

0 d′

∣∣∣∣).

Thus f is an isomorphism.
(d) All the work for this has already been done. By the 1st Isomorphism Theorem

(applied to the surjective homomorphism f we have N/(ker(f) ∼= D. Since it is clear that
ker(f) = N , we are done.

#10 (a) Is the map A→ tr(A) (where tr(A) is the trace of the matrix A, i.e., the sum of
its diagonal elememts) a homomorphism from M(R) to R? Why or why not?

(b) Is the map A→ det(A) a homomorphsim from M(R) to R? Why or why not?

Solution:
(a) Let I denote the (2 by 2) identity matrix. Then tr(I) = 2 and so 2 = tr(I) =

tr(II) 6= tr(I)tr(I) = 4. Thus this map is not a homomorphism.
(b) Let eij denote the matrix with a 1 in the (i, j) position and 0 in all other po-

sitions. Then e11 + e22 = I, the identity matrix, so det(e11 + e22 = detI = 1 but
det(e11) = det(e22) = 0 so det(e11 + e22) 6= det(e11) + det(e22) and hence the map is
not a homomorphsim.

#11 Let S1 and S2 be subrings of a ring R.
(a) Is S1 + S2 (which, by definition, is {a+ b|a ∈ S1, b ∈ S2}) necessarily a subring of

R? Why or why not?
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(b) Is S1S2 (which, by definition, is {ab|a ∈ S1, b ∈ S2} necessaily a subring of R?
Why or why not?

(c) Suppose S2 is an ideal of R. Is S1 + S2 necessarily a subring of R? Why or why
not?

(d) Show that S1 ∩ S2 is a subring of R.

Solution

(a) No. For example consider N = {
∣∣∣∣
0 b
0 0

∣∣∣∣ |b ∈ R} ⊆ M(R) and L = {
∣∣∣∣
0 0
c 0

∣∣∣∣ |b ∈

R} ⊆M(R). Each of these is a subring, but N + L = {
∣∣∣∣
0 b
c 0

∣∣∣∣ |b, c ∈ R} is not a subring

since it does not contain the producd e12e21 = e11.

(b) Again, no. For example let S1 = {
∣∣∣∣
a 0
b 0

∣∣∣∣ |a, b ∈ R} and S2 = {
∣∣∣∣
c d
0 0

∣∣∣∣ |c, d ∈ R}.

Then any matrix in S1S2 has rank one. Now e11 =

∣∣∣∣
1 0
0 0

∣∣∣∣ is in both S1 and S2 so

e11 = e2
11 ∈ S1S2. Also e22 =

∣∣∣∣
0 0
1 0

∣∣∣∣
∣∣∣∣
0 1
0 0

∣∣∣∣ ∈ S1S2. However, e11 + e22, which is the

identity matrix, has rank 2 and so is not in S1S2.
(c) Yes. Let x1, x2 ∈ S1 + S2. Then x1 = a1 + b1, x2 = a2 + b2 for some a1, a2 ∈

S1, b1, b2 ∈ S2 and so x1 − x2 = (a1 + b1) − (a2 + b2) = (a1 − a2) + (b1 − b2). Since S1

and S2 are subrings, a1 − a2 ∈ S1 and b1 − b2 ∈ S2. Also x1x2 = (a1 + b1)(a2 + b2) =
a1a2 + a1b2 + b1a2 + b1b2. Since S1 is a subring a1a2 ∈ S1 and since S2 is an ideal and
b1, b2 ∈ S2 we have a1b2, b1a2, b1b2 ∈ S2. Thus x1x2 ∈ S1 + S2. Since S1 + S2 6= ∅ (as, for
example, it contains 0) we have that S1 + S2 is a subring of R.

(d) Since 0 ∈ S1 and 0 ∈ S2 we have 0 ∈ S1 ∩ S2 and so S1 ∩ S2 6= 0. Now let
x, y ∈ S1 ∩ S2. Then x, y ∈ S1 and x, y ∈ S2. Since S1 and S2 are subrings, we have
x − y ∈ S1, x − y ∈ S2, xy ∈ S1, xy ∈ S2. Then x − y ∈ S1 ∩ S2 and xy ∈ S1 ∩ S2. Hence
S1 ∩ S2 is a subring of R.

#12 Prove that if f(x), g(x), h(x) ∈ F [x] (where F is a field), (f(x), g(x)) = 1, and f(x)
divides g(x)h(x), then f(x) divides h(x).

Solution: We know 1 = a(x)f(x) + b(x)g(x) for some a(x), b(x) ∈ F [x]. Then
h(x) = h(x)(a(x)f(x) + b(x)g(x)) = h(x)a(x)f(x) + b(x)g(x)h(x). Since f(x) divides both
summands in this expression, it divides h(x).

#13 Prove that if f(x) ∈ F [x] where F is a field, a ∈ F and f(a) = 0 then x − a divides
f(x).

lsolution: Since x − a divides f(x) we have f(x) = (x − a)f(x). Now the evaluation
ea : F [x]→ F defined by ea(g(x) = g(a) is a homomorphism and so

f(a) = ea(f(x) = ea((x− a)q(x)) = ea(x− a)ea(q(x)) = (a− a)q(a) = 0q(a) = 0.

$14 (a) Find all the irreducible polynomials of degree 3 over Z2.
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(b) Find all the irreducible polynomials of degree 3 over Z3.
(c) Find all the irreducible polynomials of degree 4 over Z2.

Solution: In each part we will list all the polynomials which are not reducible.
(a) A polynomial of degree 3 over Z2 has the form f(x) = x3 + a2x

2 + a1x+ a0 where
each of a2, a1, a0 is either 0 or 1. Note that we are writing 0 instead of [0] and 1 instead of
[1]. Now f(x) reducible if and only if it has a root. (Be aware that this statement applies
only to polynomials of degree 2 or 3.) Now f(0) = a0 and so f(x) is reducible if a0 = 0. If
a0 = 1 then f(1) = 1 +a2 +a1 + 1 = a2 +a1. Thus f(x) is reducible if a1 = 1 and a2 = a1.
Thus the only irrecudible polynomials are x3 + x2 + 1 and x3 + x+ 1.

(b) A polynomial of degree 3 over Z3 has the form f(x) = a3x
3 + a2x

2 + a1x + a0

where a3 = 1 or 2 (since a3 6= 0 as the polynomial has degree 3).
Assume first that a3 = 1. Then f(0) = a0, f(1) = 1 + a2 + a1 + a0, f(2) = 2 +

a2 + 2a1 + a0. Thus f(x) is irreducible if and only if a0 6= 0, 1 + a2 + a1 + a0 6= 0 and
2 + a2 + 2a1 + a0 6= 0. The first inequality says a0 = 1 or 2. Once a0 is chosen we
may take any value for a1 and then take one of two values for a2 in order to satisfy the
second inequality. Thus there are 12 possible choices of a0, a1, a2 that satisfy the first two
inequalities. We check whether or not each of these 12 choices satisfies the third inequality
and find that only 8 of them do. The complete list of corresponding polynomials (the
monic irreducible polynomials of degree 3 over Z3 is:

x3 + 2x+ 1,

x3 + x2 + 2x+ 1,

x3 + 2x2 + 1,

x3 + 2x2 + x+ 1,

x3 + 2x+ 2,

x3 + x2 + 2,

x3 + x2 + x+ 2,

x3 + 2x2 + 2x+ 2.

If a3 = 2, then 2f(x) is a monic irreducible polynomial and so is on the above list.
Then f(x) = 2(2f(x) is twice one of the polynomials on the above list.

(c) A polynomial of degree 4 is reducible if and only if it has or a root or it is the
product of two irreducible polynomials of degree 2. Now a polynomial of degree 2 over Z2

has the form x2 + a1x + a0 and f(0) = a0, f(1) = 1 + a1 + a0. Thus this polynomial is
irreducible if and only if a0 = 1 and a1 = 1. Hence there is only one irrecucible polynomial,
x2 + x+ 1, of degree 2 over Z2. Its square is x4 + x2 + 1.

A polynomial of degree 4 over Z2 has the form f(x) = x4 + a3x
3 + a2x

2 + a1x + a0

where each of a3, a2, a1, a0 is either 0 or 1. Now f(0) = a0, f(1) = 1 + a3 + a2 + a1 + a0.
Thus f(x) has no root if and only if a0 = 1 and a3 + a2 + a1 = 1. Since the polynomial
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x4+x2+1 is reducible (by the result of the previous paragraph) we have that the irreducible
polynomials are:

x4 + x3 + x2 + x+ 1

x4 + x3 + 1

x4 + x+ 1

.
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