Math 351

Solutions to review problems for Exam \#2

November 17, 2007
Exam \#2 will be given during the normal class period on Monday, November 19. It will cover material from Sections 4.5, 4.6, 5.1-5.3, 6.3, 9.1, 9.4, 7.1-7.4. This set of review problems is about twice as long as the exam. As usual, \mathbf{Z} denotes the ring of integers, \mathbf{Q} denotes the field of rational numbers, and \mathbf{C} denotes the field of complex numbers.
$\# 1$ Let $f(x) \in \mathbf{R}[x]$ have degree 7. Prove that $f(x)$ is a reducible polynomial in $\mathbf{R}[x]$. You may want to use the fact that every irreducible polynomial in $\mathbf{C}[x]$ has degree 1.

Solution: Since $f(x) \in \mathbf{R}[x] \subset \mathbf{C}[x]$, we have

$$
f(x)=a\left(x-b_{1}\right)\left(x-b_{2}\right) \ldots\left(x-b_{7}\right)
$$

for some $a, b_{1}, b_{2}, . ., b_{7} \in \mathbf{C}$. Since the coefficients of $f(x)$ are real, we also have

$$
f(x)=\bar{a}\left(x-\bar{b}_{1}\right)\left(x-\bar{b}_{2}\right) \ldots\left(x-\bar{b}_{7}\right)
$$

where \bar{u} denotes the complex conjugate of u. Thus \bar{b}_{1} is a root of $f(x)$ and so is one of b_{1}, \ldots, b_{7}. If $\bar{b}_{1}=b_{1}$ then $b_{1} \in \mathbf{R}$, so $x-b_{1} \in \mathbf{R}[x]$ and hence $f(x)$ is reducible in $\mathbf{R}[x]$. If $\bar{b}_{1}=b_{j}$ for some $j, 2 \leq j \leq 7$ then $\left(x-b_{1}\right)\left(x-b_{j}\right)=\left(x-b_{1}\right)\left(x-\bar{b}_{1}\right) \in \mathbf{R}[x]$ and $f(x)$ is reducible in $\mathbf{R}[x]$.
$\# 2$ Let $f(x)$ and $g(x)$ be polynomials in $\mathbf{Z}[x]$. Let p be a prime integer. Prove that if p divides every coefficient of $f(x) g(x)$ then either p divides every coefficient of $f(x)$ or p divides every comefficient of $g(x)$.
Solution: Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ and $g(x)=b_{m} x^{m}+\ldots+b_{1} x+b_{0}$. Assume p does not divide every coefficient of $f(x)$ and does not divide every coefficient of $g(x)$. Then we may find $i, 0 \leq i \leq n$, such that $p \mid a_{k}$ for $0 \leq k<i$, but $p \nmid a_{i}$. We may also find $j, 0 \leq j \leq m$, such that $p \mid b_{k}$ for $0 \leq k<j$, but $p \nless b_{j}$. Write $a_{l}=0$ if $l>n$ and $b_{l}=0$ if $l>m$. Then the coefficient of x^{i+j} in $f(x) g(x)$ is $\sum_{l=0}^{i+j} a_{l} b_{i+j-l}$. Since $p \mid a_{l}$ whenever $l<i$ and $p \mid b_{i+j-l}$ whenever $l>i$ we see that the coefficient of x^{i+j} in $f(x) g(x)$ is congruent to $a_{i} b_{j}$ modulo p. But $p \not \backslash a_{i} b_{j}$.
\#3 Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbf{Z}[x]$ and suppose that $\frac{r}{s} \neq 0$ is a root of $f(x)$ where $r, s \in \mathbf{Z}$ and r and s are relatively prime. Prove that $r \mid a_{0}$ and $s \mid a_{n}$.

Solution: We have $0=s^{n} f\left(\frac{r}{s}\right)=a_{n} r^{n}+a_{n-1} r^{n-1} s+a_{n-2} r^{n-2} s^{2}+\ldots+a_{1} r s^{n-1}+a_{0} s^{n}$. Thus

$$
\begin{aligned}
a_{n} r^{n} & =-\left(a_{n-1} r^{n-1} s+a_{n-2} r^{n-2} s^{2}+\ldots+a_{1} r s^{n-1}+a_{0} s^{n}\right)= \\
& -s\left(a_{n-1} r^{n-1}+a_{n-2} r^{n-2} s+\ldots+a_{1} r s^{n-2}+a_{0} s^{n-1}\right)
\end{aligned}
$$

Thus $s \mid a_{n} r^{n}$ and, since $(r, s)=1, r \mid a_{n}$. Similarly

$$
a_{0} s^{n}=-\left(a_{n} r^{n}+\ldots+a_{1} r s^{n-1}\right)=-r\left(a_{n} r^{n-1}+\ldots+a_{1} s^{n-1}\right)
$$

and so $r \mid a_{0}$.
\#4 Let $f(x) \in \mathbf{Z}[x]$ and assume that $f(x)$ is an irreducible polynomial in $\mathbf{Z}[x]$. Prove that $f(x)$ is an irreducible polynomial in $\mathbf{Q}[x]$. You may want to use the results of problems $\# 2$ and $\# 3$.

Solution: We will assume that $f(x) \in \mathbf{Z}[x]$ is reducible in $\mathbf{Q}[x]$, say $f(x)=g(x) h(x)$ where $g(x), h(x) \in \mathbf{Q}[x]$ are polynomials of degree ≥ 1, and show that $f(x)$ is reducible in $\mathbf{Z}[x]$. First note that there are integers m and n such that $m g(x), n h(x) \in \mathbf{Z}[x]$. Thus $m n f(x)=(m g(x))(n h(x))$ is reducible in $\mathbf{Z}[x]$. Let S denote the set of all positive integers l such that $l f(x)$ is reducible in $\mathbf{Z}[x]$. Then $m n \in S$, so S is nonempty. Hence S contains a smallest element k. If $k>1$ then some prime p divides k and hence p divides every coefficient of $k f(x)$. Since $k f(x)$ is reducible in $\mathbf{Z}[x]$ we have $k f(x)=r(x) s(x)$ for some polynomials $r(x), s(x) \in \mathbf{Z}[x]$ of degree ≥ 1. Then, by the result of problem $\# 2$, either p divides every coefficient of $r(x)$ or p divides every coefficient of $s(x)$. In the first case $\frac{1}{p} r(x) \in \mathbf{Z}[x]$ and so $\frac{k}{p} f(x)=\left(\frac{1}{p} r(x)\right)(s(x))$ is reducible in $\mathbf{Z}[x]$. This contradicts the minimality of k. In the second case $\frac{1}{p} s(x) \in \mathbf{Z}[x]$ and so $\frac{k}{p} f(x)=(r(x))\left(\frac{1}{p} s(x)\right)$ is reducible in $\mathbf{Z}[x]$. Again, this contradicts the minimality of k. Thus $k=1$ and the proof is complete.
\#5 Show (by constructing an example) that there is a field with 8 elements.

Solution:

Suppose $f(x)$ is an irreducible polynomial of degree 3 over the field \mathbf{Z}_{2}. Then $F=$ $\mathbf{Z}[x] /(f(x))$ is a field whose elements are all the cosets of the ideal $f(x)$. Now if $g(x) \in \mathbf{Z}_{2}[x]$ we may write $g(x)=q(x) f(x)+r(x)$ where $q(x), r(x) \in \mathbf{Z}_{2}[x]$ and either $r(x)=0$ or $r(x)$ has degree ≤ 2. Then the coset $g(x)+(f(x))$ is equal to the coset $r(x)+(f(x))$ and so the number of elements in F is equal to the number of possible $r(x)$. Since there are only 2 choices (in \mathbf{Z}_{2}) for each of the 3 coefficients of $r(x)$, we see that F has 8 elements. Thus we only need to find an irreducible polynomial of degree 3 over \mathbf{Z}_{2}. Since a polynomial of degree 3 is reducible if and only if it has a root, we simply need to find a polynomial $f(x)=x^{3}+a x^{2}+b x+c$ such that $f(0) \neq 0, f(1) \neq 0$. Since \mathbf{Z}_{2} has only two elements (0 and 1), this means that $c=f(0)=1,1+a+b+c=f(1)=1$. Thus $f(x)$ is irreducible if and only if $c=1$ and $a+b=1$. Thus there are two irreducible polynomials of degree 3 over $\mathbf{Z}_{2}: x^{3}+x^{2}+1$ and $x^{3}+x+1$.
$\# 6$ Let F be a field and $f(x) \in F[x]$. Let $p(x) \in F[x]$ be a polynomial of degree ≥ 1. Prove that $f(x)+(p(x))$ is a unit in $F[x] /(p(x))$ if and only if $f(x)$ and $p(x)$ are relatively prime.

Solution: $f(x)+(p(x))$ is a unit in $F[x] /(p(x))$ if and only if there is some $g(x) \in F[x]$ such that $f(x) g(x)+(p(x))=(f(x)+(p(x)))(g(x)+(p(x))=1+(p(x))$. This happens if and only if $f(x) g(x)-1 \in(p(x))$ and this is equivalent to $f(x) g(x)-1=k(x) p(x)$ for some $k(x) \in F[x]$. This may be rewritten as $f(x) g(x)-p(x) k(x)=1$. But this condition holds if and only if $f(x)$ and $p(x)$ are relatively prime.
\#7 (a) State the definition a prime ideal in a ring R.
(b) Prove that an ideal I in a commutative ring R with identity is a prime ideal if and only if R / I is an integral domain.
(c) State the definition of a maximal ideal in a ring R.
(d) Prove that if R is a commutative ring with identity, then an ideal I in R is maximal if and only if R / I is a field.

Solution:

(a) An ideal $I \subseteq R$ is prime if whenever $a, b \in R, a b \in I$ we have either $a \in I$ or $b \in I$.
(b) Suppose I is prime ideal in R. Let $a+I, b+I \in R / I$ and assume $(a+I)(b+I)=0$ in R / I. Then $a b+I=I$ so $a b \in I$. Since I is prime, either $a \in I$ or $b \in I$ and hence either $a+I=0$ or $b+I=0$ in R / I. Hence R / I is an integral domain. Conversely, suppose R / I is an intgral domain and $a, b \in R, a b \in I$. Then $(a+I)(b+I)=a b+I=I=0$ in R / I so either $a+I=0$ or $b+I=0$ in R / I. Thus either $a \in I$ or $b \in I$, so I is a prime ideal.
(c) An ideal $I \subseteq R$ is a maximal ideal in R if $I \neq R$ whenever J is an ideal of R with $I \subseteq J \subseteq R$ then either $J=I$ or $J=R$.
(d) Let S be a commutative ring with identity. If S is the only nonzero ideal of S and if $0 \neq a \in S$ then $(a)=S$ so $1 \in(a)$. Thus $1=a b$ for some $b \in S$ and so S is a field. Conversely, if S is a field any nonzero ideal must contain 1 and so must equal S. Since an ideal $I \subseteq R$ is maximal if and only if R / I is the only nonzero ideal of R / I we have the result.
\#8 Show that $\mathbf{Z}[\sqrt{-2}]$ is a Euclidean domain with $\delta(a+b \sqrt{-2})=a^{2}+2 b^{2}$.
Solution: Write $R=\mathbf{Z}[\sqrt{-2}] . R$ is a subring of the field $\mathbf{Q}[\sqrt{-2}]$, so it is an integral domain. Thus to show R is a Euclidean domain we must verify two conditions on δ : (i) If $u, v \in R$ then $\delta(u) \leq \delta(u v)$; (ii) If $u, v \in R, v \neq 0$ then $u=q v+r$ for some $q, r \in R$ with $r=0$ or $\delta(r)<\delta(v)$. Now for $u=a+b \sqrt{-2} \in R \subseteq \mathbf{C}$ we have \bar{u}, the complex conjugate of u, is $a-b \sqrt{-2}$ and $\delta(u)=u \bar{u}$. Thus for $u, v \in R$ we have $\delta(u v)=(u v)(u v)=$ $(u \bar{u})(v \bar{v})=\delta(u) \delta(v)$ and so $\delta(u) \leq \delta(u v)$. Thus the first condition holds. To verify the second condition assume $v \neq 0$ and note that, since $\mathbf{Q}[\sqrt{-2}]$ is a field, $u=\left(w_{1}+w_{2} \sqrt{-2}\right) v$ for some $w_{1}, w_{2} \in \mathbf{Q}$. Then we may find $q_{1}, q_{2} \in \mathbf{Z}$ such that $\left|w_{1}-q_{1}\right| \leq \frac{1}{2},\left|w_{2}-q_{2}\right| \leq \frac{1}{2}$. Set $q=q_{1}+q_{2} \sqrt{-2}$ and set $r=u-q v$. We must show that either $r=0$ or $\delta(r)<\delta(v)$. Now $r=u-q v=\left(w_{1}+w_{2} \sqrt{-2}\right) v-q v=\left(\left(w_{1}-q_{1}\right)+\left(w_{2}-q_{2}\right) \sqrt{-2}\right) v$. Then writing $v=v_{1}+v_{2} \sqrt{-2}$ we have

$$
\begin{gathered}
r=\left(\left(w_{1}-q_{1}\right)+\left(w_{2}-q_{2}\right) \sqrt{-2}\right)\left(v_{1}+v_{2} \sqrt{-2}\right)= \\
\left(\left(w_{1}-q_{1}\right) v_{1}-2\left(w_{2}-q_{2}\right) v_{2}\right)+\left(\left(w_{1}-q_{1}\right) v_{2}+\left(w_{2}-q_{2}\right) v_{1}\right) \sqrt{-2}
\end{gathered}
$$

and so

$$
\begin{aligned}
\delta(r)= & \left(\left(w_{1}-q_{1}\right) v_{1}-2\left(w_{2}-q_{2}\right) v_{2}\right)^{2}+2\left(\left(w_{1}-q_{1}\right) v_{2}+\left(w_{2}-q_{2}\right) v_{1}\right)^{2}= \\
& \left(w_{1}-q_{1}\right)^{2} v_{1}^{2}-4\left(w_{1}-q_{1}\right) v_{1}\left(w_{2}-q_{2}\right) v_{2}+4\left(w_{2}-q_{2}\right)^{2} v_{2}^{2}+ \\
& 2\left(w_{1}-q_{1}\right)^{2} v_{2}^{2}+4\left(w_{1}-q_{1}\right) v_{2}\left(w_{2}-q_{2}\right) v_{1}+2\left(w_{2}-q_{2}\right)^{2} v_{1}^{2}=
\end{aligned}
$$

$$
\begin{gathered}
\left(\left(w_{1}-q_{1}\right)^{2}+2\left(w_{2}-q_{2}\right)^{2}\right) v_{1}^{2}+\left(4\left(w_{2}-q_{2}\right)^{2}+2\left(w_{1}-q_{1}\right)^{2}\right) v_{2}^{2} \leq \\
\frac{3}{4} v_{1}^{2}+\frac{3}{2} v_{2}^{2}<\delta(v) .
\end{gathered}
$$

$\# 9$ Let R be an integral domain. Define $S=\{(a, b) \mid a, b \in R, b \neq 0\}$. Define $(a, b) \sim$ (c, d) if $a d=b c$. Show that \sim is an equivalence relation.

Solution:

Reflexivity: Since $a b=b a$ we have $(a, b) \sim(a, b)$.
Symmetry: Assume $(a, b) \sim(c, d)$. Then $a d=b c$ and so $c b=d a$. Hence $(c, d) \sim(a, b)$.
Transitivity: Assue $(a, b) \sim(c, d),(c, d) \sim(e, f)$. Then $a d=b c$ and $c f=d e$. Multiplying the first equalty by f gives $a d f=b c f$ and multiplying the second by b gives $b c f=b d e$. Thus $a d f=b d e$. Hence $0=a d f-b d e=d(a f-b e)$. Since R is an integral domain and $d \neq 0$ we have $a f-b e=0$ so $a f=b e$ and hence $(a, b) \sim(e, f)$.
$\# 10$ Let $R=\{a+b \sqrt{3} \mid a, b \in \mathbf{Z}\}$. Then R is an integal domain (why?) and so R has a quotient field F. What is F ?

Solution: R is a subring of the field of real numbers and is therefore an integral domain. Let $E=\{a+b \sqrt{3} \mid a, b \in \mathbf{Q}\}$. Note that if $0 \neq a+b \sqrt{3} \in E$ then

$$
(a+b \sqrt{3})(a-b \sqrt{3})=a^{2}-3 b^{2}
$$

is a rational number and is nonzero (since $\sqrt{3}$ is irrational). Thus

$$
(a+b \sqrt{3})^{-1}=\frac{(a-b \sqrt{3})}{a^{2}-3 b^{2}}
$$

Hence E is a subfield of the field of real numbers. Then by Theorem $9.31, E$ contains a subfield isomorphic to F. But any subfield of the real numbers containing R must contain all rational numbers and must contain $\sqrt{3}$, so it must contain E. Thus F is isomorphic to E.
$\# 11$ Let G be a group, $g, h, k \in G$ and $g h=g k$. Prove that $h=k$. Conclude that the multiplicative inverse of g is unique.

Solution: Since G is a group, it contains an identity element e and some element u such that $u g=e$. Then $h=e h=(u g) h=u(g h)=u(g k)=(u g) k=e k=k$. Now suppose $u, v \in G$ are inverses of g. Then $g u=e=g v$ and so we have $u=v$.
\#12 Compute the product

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 6 & 1 & 2 & 3 & 7 & 5
\end{array}\right)\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 1 & 5 & 6 & 7
\end{array}\right)
$$

in the symmetric group on 7 elements.

Solution:

$\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 1 & 2 & 4 & 3 & 7 & 5\end{array}\right)$
\#13 Let $g=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 7 & 6 & 4 & 1 & 3\end{array}\right)$ in the symmetric group on 7 elements.
(a) Find g^{-1}.
(b) Find the order of g.

Solution:

(a) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 1 & 7 & 5 & 2 & 4 & 3\end{array}\right)$
(b) Note that $g(1)=2, g^{2}(1)=g(2)=5, g^{3}(1)=g(5)=4, g^{4}(1)=g(4)=6, g^{5}(1)=$ $g(6)=1$. Thus $g^{k}(1)=1$ if and only if $5 \mid k$. This computation also shows that $g^{5}(2)=$ $2, g^{5}(5)=5, g^{5}(4)=4$, and $g^{5}(6)=6$. Similarly $g(3)=7, g^{2}(7)=3$ and so $g^{k}(3)=3$ if and only if $2 \mid k$ and the computation also shows that $g^{2}(7)=7$. Thus 10 must divide the order of g and g^{10} is the identity permuation. Thus the order of g is 10 .
\#14 Let G be a group with identity element e. Suppose $g^{2}=e$ for all $g \in G$. Prove that G is commutative.

Solution: Here are two slightly different proofs:
(i) Multiply both sides of $g^{2}=e$ by g^{-1} to get $g=g^{-1}$ for all $g \in G$. Now let $g, h \in G$ and recall that $(g h)^{-1}=h^{-1} g^{-1}$. Then

$$
g h=(g h)^{-1}=h^{-1} g^{-1}=h g .
$$

(ii) Let $g, h \in G$. Then $(g h)^{2}=g h g h=e$. Also $g^{2}=h^{2}=e$ so $g^{2} h^{2}=e$. Hence $g h g h=g g h h$. Multiply on the left by g^{-1} to get $h g h=g h h$ and then multiply on the right by h^{-1} to get $h g=g h$.
$\# 15$ Let G be a commutative group with identity element e and let $n \in \mathbf{Z}, n \geq 1$. Let $H=\left\{g \in G \mid g^{n}=e\right\}$. Prove that H is a subgroup of G.

Solution: Since $e \in H$, we have that H is nonempty. If $g, h \in H$, then $(g h)^{n}=g^{n} h^{n}=$ $e e=e$, so $g h \in H$. Also, $\left(g^{-1}\right)^{n}=g^{-n}=\left(g^{n}\right)^{-1}=e^{-1}=e$, so $g^{-1} \in H$. Thus H is a subgroup.

