Exam \#2 will be given during the normal class period on Monday, November 19. It will cover material from Sections 4.5, 4.6, 5.1-5.3, 6.3, 9.1, 9.4, 7.1-7.4. This set of review problems is about twice as long as the exam. As usual, \mathbf{Z} denotes the ring of integers, \mathbf{Q} denotes the field of rational numbers, and \mathbf{C} denotes the field of complex numbers.
$\# 1$ Let $f(x) \in \mathbf{R}[x]$ have degree 7. Prove that $f(x)$ is a reducible polynomial in $\mathbf{R}[x]$. You may want to use the fact that every irreducible polynomial in $\mathbf{C}[x]$ has degree 1.
\#2 Let $f(x)$ and $g(x)$ be polynomials in $\mathbf{Z}[x]$. Let p be a prime integer. Prove that if p divides every coefficient of $f(x) g(x)$ then either p divides every coefficient of $f(x)$ or p divides every comefficient of $g(x)$.
\#3 Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbf{Z}[x]$ and suppose that $\frac{r}{s} \neq 0$ is a root of $f(x)$ where $r, s \in \mathbf{Z}$ and r and s are relatively prime. Prove that $r \mid a_{0}$ and $s \mid a_{n}$.
\#4 Let $f(x) \in \mathbf{Z}[x]$ and assume that $f(x)$ is an irreducible polynomial in $\mathbf{Z}[x]$. Prove that $f(x)$ is an irreducible polynomial in $\mathbf{Q}[x]$. You may want to use the results of problems $\# 2$ and \#3.
\#5 Show (by constructing an example) that there is a field with 8 elements.
\#6 Let F be a field and $f(x) \in F[x]$. Let $p(x) \in F[x]$ be a polynomial of degree ≥ 1. Prove that $f(x)+(p(x))$ is a unit in $F[x] /(p(x))$ if and only if $f(x)$ and $p(x)$ are relatively prime.
\#7 (a) State the definition a prime ideal in a ring R.
(b) Prove that an ideal I in a commutative ring with identity R is a prime ideal if and only if R / I is an integral domain.
(c) State the definition of a maximal ideal in a ring R.
(d) Prove that if R is a commutative ring with identity, then an ideal I in R is maximal if and only if R / I is a field.
\#8 Show that $\mathbf{Z}[\sqrt{-2}]$ is a Euclidean domain with $\delta(a+b \sqrt{-2})=a^{2}+2 b^{2}$.
\#9 Let R be an integral domain. Define $S=\{(a, b) \mid a, b \in R, b \neq 0\}$. Define $(a, b) \sim(c, d)$ if $a d=b c$. Show that \sim is an equivalence relation.
$\# 10$ Let $R=\{a+b \sqrt{3} \mid a, b \in \mathbf{Z}\}$. Then R is an integal domain (why?) and so R has a quotient field F. What is F ?
\#11 Let G be a group, $g, h, k \in G$ and $g h=g k$. Prove that $h=k$. Conclude that the multiplicative inverse of g is unique.
\#12 Compute the product

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 6 & 1 & 2 & 3 & 7 & 5
\end{array}\right)\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 1 & 5 & 6 & 7
\end{array}\right)
$$

in the symmetric group on 7 elements.
\#13 Let $g=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 7 & 6 & 4 & 1 & 3\end{array}\right)$ in the symmetric group on 7 elements.
(a) Find g^{-1}.
(b) Find the order of g.
\#14 Let G be a group with identity element e. Suppose $g^{2}=e$ for all $g \in G$. Prove that G is commutative.
$\# 15$ Let G be a commutative group with identity element e and let $n \in \mathbf{Z}, n \geq 1$. Let $H=\left\{g \in G \mid g^{n}=e\right\}$. Prove that H is a subgroup of G.

