Math 351

Review problems for Exam #2 November 12, 2007

Exam #2 will be given during the normal class period on Monday, November 19. It will cover material from Sections 4.5, 4.6, 5.1 - 5.3, 6.3, 9.1, 9.4, 7.1 - 7.4. This set of review problems is about twice as long as the exam. As usual, \(\mathbb{Z} \) denotes the ring of integers, \(\mathbb{Q} \) denotes the field of rational numbers, and \(\mathbb{C} \) denotes the field of complex numbers.

#1 Let \(f(x) \in \mathbb{R}[x] \) have degree 7. Prove that \(f(x) \) is a reducible polynomial in \(\mathbb{R}[x] \). You may want to use the fact that every irreducible polynomial in \(\mathbb{C}[x] \) has degree 1.

#2 Let \(f(x) \) and \(g(x) \) be polynomials in \(\mathbb{Z}[x] \). Let \(p \) be a prime integer. Prove that if \(p \) divides every coefficient of \(f(x)g(x) \) then either \(p \) divides every coefficient of \(f(x) \) or \(p \) divides every coefficient of \(g(x) \).

#3 Let \(f(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{Z}[x] \) and suppose that \(\frac{r}{s} \neq 0 \) is a root of \(f(x) \) where \(r, s \in \mathbb{Z} \) and \(r \) and \(s \) are relatively prime. Prove that \(r|a_0 \) and \(s|a_n \).

#4 Let \(f(x) \in \mathbb{Z}[x] \) and assume that \(f(x) \) is an irreducible polynomial in \(\mathbb{Z}[x] \). Prove that \(f(x) \) is an irreducible polynomial in \(\mathbb{Q}[x] \). You may want to use the results of problems #2 and #3.

#5 Show (by constructing an example) that there is a field with 8 elements.

#6 Let \(F \) be a field and \(f(x) \in F[x] \). Let \(p(x) \in F[x] \) be a polynomial of degree \(\geq 1 \). Prove that \(f(x) + (p(x)) \) is a unit in \(F[x]/(p(x)) \) if and only if \(f(x) \) and \(p(x) \) are relatively prime.

#7 (a) State the definition a prime ideal in a ring \(R \).

(b) Prove that an ideal \(I \) in a commutative ring with identity \(R \) is a prime ideal if and only if \(R/I \) is an integral domain.

(c) State the definition of a maximal ideal in a ring \(R \).

(d) Prove that if \(R \) is a commutative ring with identity, then an ideal \(I \) in \(R \) is maximal if and only if \(R/I \) is a field.

#8 Show that \(\mathbb{Z}[\sqrt{-2}] \) is a Euclidean domain with \(\delta(a + b\sqrt{-2}) = a^2 + 2b^2 \).

#9 Let \(R \) be an integral domain. Define \(S = \{(a, b)|a, b \in R, b \neq 0\} \). Define \((a, b) \sim (c, d) \) if \(ad = bc \). Show that \(\sim \) is an equivalence relation.

#10 Let \(R = \{a + b\sqrt{3}|a, b \in \mathbb{Z}\} \). Then \(R \) is an integral domain (why?) and so \(R \) has a quotient field \(F \). What is \(F \)?

#11 Let \(G \) be a group, \(g, h, k \in G \) and \(gh = gk \). Prove that \(h = k \). Conclude that the multiplicative inverse of \(g \) is unique.
#12 Compute the product

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 6 & 1 & 2 & 3 & 7 & 5 \\
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 1 & 5 & 6 & 7 \\
\end{pmatrix}
\]

in the symmetric group on 7 elements.

#13 Let \(g = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7) (2 \ 5 \ 7 \ 6 \ 4 \ 1 \ 3) \) in the symmetric group on 7 elements.

(a) Find \(g^{-1} \).

(b) Find the order of \(g \).

#14 Let \(G \) be a group with identity element \(e \). Suppose \(g^2 = e \) for all \(g \in G \). Prove that \(G \) is commutative.

#15 Let \(G \) be a commutative group with identity element \(e \) and let \(n \in \mathbb{Z}, n \geq 1 \). Let \(H = \{g \in G | g^n = e\} \). Prove that \(H \) is a subgroup of \(G \).