#1 Use mathematical induction to prove that 8 divides $5^{2n} - 1$ for every integer $n \geq 1$.

#2 Use the well ordering principle to show that if a, b are natural numbers then there exist integers $q, r \geq 0$ such that $a = qb + r$ and $0 \leq r < b$.

#3 Suppose $\overline{A} = 33, \overline{B} = 17$, and $\overline{A \cap B} = 12$. Find $\overline{A \cup B}$.

#4 Suppose $\overline{A} = 11$.
 (a) Find $\overline{\mathcal{P}(A)}$.
 (b) How many subsets $B \subseteq A$ satisfy $\overline{B} = 4$?

#5 (a) State the definition of a relation from A to B.
 (b) Suppose $\overline{A} = 7, \overline{B} = 5$. How many relations from A to B are there?

#6 Let $A = \{1, 2, 3, 4, 5\}$. For each of the following relations from A to A state whether or not it is an equivalence relation. If it is an equivalence relation give the corresponding partition of A.
 (a) $R = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4), (5, 5)\}$.
 (b) $R = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4), (4, 5), (5, 5)\}$.

#7 (a) State the reflexive, symmetric, anti-symmetric, and transitive properties of a relation.
 (b) State the definition of an equivalence relation, of a partial order, of a total order, and of a partition.

#8 For $0 \leq n \leq 6$, let $J_n = \{k \in \mathbb{Z} | 7 \text{ divides } k - n\}$. Show that $\{J_0, ..., J_6\}$ is a partition of the integers and describe the corresponding equivalence relation.

#9 (a) Define a relation R on the integers by aRb if and only if either $a = b$ or $a + 2 < b$. Is R a partial order? Is it a total order?
 (b) Define a relation S on the integers by aSb if and only if a and b have the same parity (i.e., both are even or both are odd) and $a \leq b$. Is S a partial order? Is it a total order?

#10 State the definition of a function f from a set A to a set B. State the definition of the domain, codomain, and range of f.

#11 Let $A = \{1, 2, 3, 4\}, B = \{x, y, z\}$. Let f be the function from A to B defined by
\[f(1) = z, f(2) = x, f(3) = y, f(4) = z \] and \(g \) be the function from \(B \) to \(A \) defined by \(g(x) = 4, g(y) = 3, g(z) = 2 \). Find \(f \circ g \) and \(g \circ f \). Is either of the functions \(f \circ g, g \circ f \) one-to-one? Onto?

#12 Suppose \(f \) is a function from \(A \) to \(C \) an \(g \) is a function from \(B \) to \(C \). When will \(f \cup g \) be a function? Why?

#13 State the definition of: \(\lim_{n \to \infty} x_n = L \).

#4 (a) Show that \(\lim_{n \to \infty} \frac{n+1}{1-2n} = -\frac{1}{2} \).

(b) Show that \(\lim_{n \to \infty} \frac{2^n}{3^n} = 0 \).

(c) Show that the sequence given by \(x_n = (-1)^n(1 - \frac{1}{n}) \) diverges.