Math 300 - Review problems for Exam #1 - February 12, 2009

#1 Suppose A and B are true while P and Q are false. State whether or not each of the following is true and justify your answer.

(a) $(A \land P) \Rightarrow (P \land Q)$;
(b) $(A \lor \sim Q \lor \sim B) \Rightarrow (P \lor \sim Q)$.

Solution: (a) This is true, since $A \land P$ is false.
(b) This is true, since $P \lor \sim Q$ is true.

#2: Make truth tables for each of the following propositional forms:

(a) $(P \lor Q) \land (\sim P \lor \sim Q)$;
(b) $((P \land Q) \lor (P \land R)) \lor (P \land R)$.

Solution:

(a)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\sim P$</th>
<th>$\sim Q$</th>
<th>$P \lor Q$</th>
<th>$\sim P \lor \sim Q$</th>
<th>$(P \lor Q) \land (\sim P \lor \sim Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>$\sim R$</th>
<th>$P \land Q$</th>
<th>$P \land \sim R$</th>
<th>$P \land R$</th>
<th>$((P \land Q) \lor (P \land \sim R)) \lor (P \land R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

#3 Prove that $P \iff Q$ is equivalent to $(P \land Q) \lor (\sim P \land \sim Q)$.

Solution: We will compare the truth tables.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \iff Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

1
$$\begin{bmatrix}
 P & Q & \sim P & \sim Q & P \land Q & \sim P \land \sim Q & (P \land Q) \lor (\sim P \land \sim Q) \\
 T & T & F & F & T & F & T \\
 T & F & F & T & F & F & F \\
 F & T & T & F & F & F & F \\
 F & F & T & T & F & T & T
\end{bmatrix}.$$

Since the last columns are identical in the two tables, the statements are equivalent.

#4 Is each of the following a tautology, a contradiction, or neither?

(a) \((P \lor \sim Q) \Rightarrow Q\)

(b) \((P \land Q) \lor (P \lor Q) \lor (P \Rightarrow Q) \lor (Q \Rightarrow P)\).

Solution: (a) is true if \(P\) and \(Q\) are both true, but is false if \(P\) is true and \(Q\) is false. Thus it is neither a tautology or a contradiction.

(b) Since \(P \Rightarrow Q\) is true whenever \(Q\) is true and \(Q \Rightarrow P\) is true whenever \(Q\) is false, \((P \Rightarrow Q) \lor (Q \Rightarrow P)\) is a tautology and so (b) is a tautology.

#5 Which of the following statements are true (where the universe is the set of all real numbers)? Why?

(a) \((\forall x)(\exists y)((x^2 + 1)y = 1)\);

(b) \((\exists x)(\forall y)((x^2 + 1)y = 1)\);

(c) \((\forall x)(\exists y)((x + 1)y = 1)\);

(d) \((\exists x)(\forall y)((x + 1)y = 1)\);

(e) \((\exists N)((N \text{ is an integer}) \land (N > 0) \land (\frac{1}{N}) < .001))\);

(f) \((\exists N)(\forall M)((N \text{ is an integer}) \land ((M > N) \Rightarrow (\frac{1}{M}) < .001))\);

(g) \((\exists M)(\forall N)((N \text{ is an integer}) \land ((M > N) \Rightarrow (\frac{1}{M}) < .001))\);

Solution:

(a) Taking \(y = \frac{1}{x^2 + 1}\) shows that this is true.

(b) This is false, for unless \(y = \frac{1}{x^2 + 1}\) the equality does not hold.

(c) This is false. If \(x = -1\) there is no such \(y\).

(d) This is false, for unless \(y = \frac{1}{x + 1}\) the equality does not hold.

(e) This is true, for \(\frac{1}{N} < .001\) is equivalent to \(1000 < N\) (as we see by multiplying by 1000\(N\)). Thus, for example, we may take \(N = 1001\).

(f) This is true, for \(\frac{1}{M} < .001\) is equivalent to \(1000 < M\) (as we see by multiplying by 1000\(M\)). Thus, for example, we may take \(N = 1000\).

(g) This is false. For example, for given any \(M\) there is some integer \(N\) greater than \(M\).

#6 Prove each of the following:

(a) If \(n\) is an integer, the 24 divides \(x(x + 1)(x + 2)(x + 3)\).
(b) For every natural number N and every nonzero real number r there is a natural number M such that for all natural numbers $m > M$

$$\frac{1}{m} < \frac{r}{N}.$$

Solution:

(a) Since $x, x+1, x+2, x+3$ are four consecutive integers, two of them must be divisible by 2, at least one must be divisible by 3 and one must be divisible by 4. Thus 24 divides the product.

(b) Since $\frac{1}{m} < \frac{r}{N}$ is equivalent to $\frac{N}{r} < m$ (as we see by multiplying by $\frac{mN}{r}$ we see that we may find such an m.

7 (a) Give a direct proof that if x is an even integer and y is an odd integer, then xy is an even integer.

(b) Give a proof by contradiction to show that if a and b are integers and ab is odd, then a and b are both odd.

Solution:

(a) Let x and y be integers. If x is even, then $x = 2k$ for some integer k. Then $xy = (2k)y = 2(ky)$. Since ky is an integer, $2(ky) = xy$ is even.

(b) Let a and b be integers. Assume that ab is odd and that a and b are not both odd. Then one of a and b is even, so by part (a) ab is even. This is a contradiction, proving the assertion.

#8 Let $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6, 8\}, C = \{1, 5\}$, and $D = \text{the set of natural numbers}$. Find:

(a) $A \cap B$;
(b) $A \cup B$;
(c) $A \cap \tilde{C}$;
(d) $C \cap D$;
(e) the power set of $B \cap C$.
(f) the power set of \emptyset.

Solution:

(a) $A \cap B = \{2, 4\}$;
(b) $A \cup B = \{1, 2, 3, 4, 5, 6, 8\}$;
(c) $A \cap \tilde{C} = \{1, 5\}$;
(d) $C \cap D = \{2, 3, 4\}$;
(e) $B \cap C = \{2, 4\}$ so $\mathcal{P}(B \cap C) = \{\emptyset, \{2\}, \{4\}, \{2, 4\}\}$;
(f) $\{\emptyset\}$.
#9 Let A, B, C be sets. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Solution: Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. Since $x \in B \cup C$, either $x \in B$ or $x \in C$. If $x \in B$, then $x \in A \cap B$ and if $x \in C$, then $x \in A \cap C$. Thus $x \in (A \cap B) \cup (A \cap C)$.

Now let $x \in (A \cap B) \cup A \cap C$. Then either $x \in A \cap B$ or $x \in A \cap C$. If $x \in A \cap B$, then $x \in A$ and $x \in B$. Since $x \in B$, we have $x \in B \cap C$ and so $x \in A \cup (B \cap C)$. If $x \in A \cap C$, then $x \in A$ and $x \in C$. Since $x \in C$, we have $x \in B \cap C$ and so $x \in A \cup (B \cap C)$.

#10 Give an example of a nested family of sets $\{A_1, A_2, \ldots, \}$ such that
(a) $\cap_{i=1}^{\infty} A_i = [2, 3]$;
(b) $\cap_{i=1}^{\infty} A_i = [2, \infty)$.

Solution:
(a) For example, $A_i = (2, 3 + \frac{1}{i})$.
(b) For example, $A_i = (2 - \frac{1}{i}, \infty)$.

#11 Prove that $\sqrt{5}$ is irrational.

Solution: First note that if n is an integer and 5 divides n^2, then 5 divides n. To see this, note that we may write $n = 5q + r$ for integers q and r with $0 \leq r < 5$. Thus $r = 0, 1, 2, 3$, or 4. Then $n^2 = (5q + r)^2 = 25q^2 + 10rq + r^2 = 5(5q^2 + 2q) + r^2$. Thus 5 divides n^2 if and only if 5 divides r^2. But $1^2 = 1$, $2^2 = 4$, $3^2 = 9$, and $4^2 = 16$ are not divisible by 5. Thus $r = 0$ so $n = 5q$ is divisible by 5.

We now prove that $\sqrt{5}$ is irrational by contradiction. Assume it is rational. Then $\sqrt{5} = \frac{a}{b}$ for integers a, b with $b \neq 0$ and such that both a and b are not divisible by 5. Then, multiplying both sides by b we have $\sqrt{5}b = a$, and squaring both sides, we have $5b^2 = a^2$. Thus 5 divides a^2 and so, by our preliminary result, 5 divides a. Thus $a = 5k$ for some integer k and so $5b^2 = (5k)^2 = 25k^2$. Dividing both sides by 5 gives $b^2 = 5k^2$ and so 5 divides b^2. Again using our preliminary result, we see that 5 divides b. Thus we have that 5 divides both a and b, contradicting our assumption.