
Math 351
Solutions to review problems for Exam #1 October 4, 2010

#1 (a) Find the greatest common divisor of 357 and 756 and write it in the form a(357)+
b(756) where a and b are integers.

Solution: (756, 357) = 21 and 21 = −8(756) + 17(357).

(b) Find the greatest common divisor of x3 − 5x2 + 7x− 2 and x4 − 2x3 + x2 + x− 6
in Q[x].

Solution: (x3 − 5x2 + 7x− 2, x4 − 2x3 + x2 + x− 6) = x− 2 and

x− 2 = (
x2

9
)(x3 − 5x2 + 7x− 2)− (

1
9
)(x− 3)(x4 − 2x3 + x2 + x− 6).

(c) Find the greatest common divisof of x4 +x2 + 1 and x4 +x3 +x2 +x+ 1 in Z2[x].

Solution: (x4 + x2 + 1, x4 + x3 + x2 + x+ 1) = 1 and

1 = (x+ 1)(x4 + x2 + 1) + x(x4 + x3 + x2 + x+ 1).

#2 Let n ∈ Z, n ≥ 1. Prove that Zn is a field if and only if n is a prime. You may use
(without proving them) results about the greatest common divisor of two integers.

Solution: Assume n is a prime and that x is a nonzero element in Zn. Then x = [a]
for some integer a such that a is not a multiple of n. Then (n, a) = 1 and so there exist
integers u and v such that 1 = au+ nv. Then [1] = [a][u] + [n][v] = [a][u]. Thus x = [a] is
a unit in Z. Since every nonzero element in Zn is a unit, Zn is a field.

Now assume that Zn is a field and that a, b are two integers with n|(ab). Then
[a][b] = [0] in Zn and so [a] = [0] or b = [0]. Thus n|a or n|b. This shows that n is prime.

#3 Let R be a ring and I be an ideal in R. Recall that the coset a + I is defined to be
{a+ x|x ∈ I}.

(a) Prove that if (a+ I) ∩ (b+ I) 6= ∅ then a+ I = b+ I.

Solution: Since (a + I) ∩ (b + I) 6= ∅ there is some element c ∈ (a + I) ∩ (b + I). Then
c ∈ a + I so c − a ∈ I. Also c ∈ b + I so c − b ∈ I. Then a − b = ((c − b) − (c − a) ∈ I.
Now an element r ∈ R belongs to a + I if and only if r − a ∈ I. Since a − b ∈ I we see
that r − b ∈ I if and only if r − a = (r − b) − (a − b) ∈ I. Thus r ∈ a + I if and only if
r ∈ b+ I so a+ I = b+ I.

(b) Prove that if a1 + I = b1 + I and a2 + I = b2 + I, then a1a2 + I = b1b2 + I.

Solution: Since a1 + I = b1 + I we have a1 − b1 ∈ I. Then since I is an ideal we have
(a1 − b1)a2 ∈ I. Also, since a2 + I = b2 + I we have a2 − b2 ∈ I and, since I is an ideal,
b1(a2 − b2) ∈ I. Then

a1a2 − b1b2 = (a1 − b1)a2 + b1(a2 − b2) ∈ I
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giving the result.

#4 Let F be a field and let f(x), g(x) ∈ F [x]. Assume f(x) and g(x) are not both 0.

(a) State (but don’t prove) the division algorithm for F [x].

Solution: Assume g(x) 6= 0. Then there exist q(x), r(x) ∈ F [x] with r(x) = 0 or
deg r(x) < deg g(x) such that

f(x) = g(x)q(x) + r(x).

(b) State the definition of the greatest common divisor of f(x) and g(x).

Solution: h(x) is a common divisor of f(x) and g(x) if h(x)|f(x) and h(x)|g(x). The
monic polynomial d(x) of greatest degree which is a common divisor of f(x) and g(x) is
the greatest common divisor.

(c) Prove that f(x) and g(x) have a greatest common divisor and that it may be
written in the form a(x)f(x) + b(x)g(x) for some a(x), b(x) ∈ F [x].

Solution: Let S = {u(x)f(x) + v(x)g(x)|u(x), v(x) ∈ F [x]}. Let S∗ = {k(x) ∈ S|k(x) 6=
0}. Let d(x) be a monic polynomial of smallest degree in S∗. We claim that d(x) is the
greatest common divisor of f(x) and g(x). Since d(x) ∈ S we see that any common divisor
of f(x) and g(x) divides d(x) and so the degree of d(x) is greater than or equal to the
degree of any common divisor. It remains to show that d(x) is a common divisor of f(x)
and g(x). By the division algorithm, we may find q(x), r(x) ∈ F [x] such that r(x) = 0 or
deg r(x) < deg d(x) and

f(x) = q(x)d(x) + r(x).

Since d(x) = u(x)f(x) + v(x)g(x) we have

r(x) = f(x)− q(x)d(x) = f(x)− q(x)(u(x)f(x) + v(x)g(x)) =

(1− q(x)u(x))f(x)− q(x)v(x)g(x) ∈ S.

Since the degree of d(x) is minimal among nonzero elements of S∗ we must have r(x) = 0
and so d(x)|f(x). Similarly, d(x)|g(x) and so d(x) is a common divisor of f(x) and g(x).
Hence it is the greatest common divisor.

#5 Let R and S be commutative rings with identity. Recall that R×S denotes {(r, s)|r ∈
R, s ∈ S} with operations (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1)(r2, s2) =
(r1r2, s1s2). Recall also that R× S is a ring.

(a) Let I be an ideal in R × S. Define J1 = {r ∈ R|(r, 0) ∈ I} and J2 = {s ∈
S|(0, s) ∈ I}. Prove that J1 is an ideal in R and that J2 is an ideal in S. Then prove that
I = {(a, b) ∈ R× S|a ∈ J1, b ∈ J2}.
Solution: Since (0R, 0S) ∈ I we have 0R ∈ J1 and 0S ∈ J2. Thus J1 and J2 are nonempty.
Now suppose a1, a2 ∈ J1. Then (a1, 0S) ∈ I and (a2, 0S) ∈ I so (a1 − a2, 0S) ∈ I, giving
a1 − a2 ∈ J1. Also, if r ∈ R, (a1r, 0) = (a1, 0)(r, 0) ∈ I and so a1r ∈ J1. Thus J1 is an
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ideal in R. Similarly, J2 is an ideal in S. Now if a ∈ J1 and b ∈ J2 we have (a, 0) ∈ I and
(0, b) ∈ I so (a, b) = (a, 0)+(0, b) ∈ I. Conversely, if (a, b) ∈ I then (a, 0) = (a, b)(1R, 0) ∈ I
and (0, b) = (a, b)(0, 1S) ∈ I. Thus a ∈ J1, b ∈ J2.

(b) Suppose the hypothesis that R and S have identity elements is omitted. Does the
result of (a) remain true? Why or why not?

Solution: The result does not remain true. For example, let R = S = 2Z. Then

I = {(a, b) ∈ 2Z× 2Z|a ≡ b(mod 4)}

is an ideal in 2Z× 2Z and J1 = J2 = 4Z. However, (2, 2) ∈ I.

#6 Let W denote {
∣∣∣∣ a b
0 0

∣∣∣∣ |a, b ∈ R} ⊆ M(R), Y denote {
∣∣∣∣ a 0
0 0

∣∣∣∣ |a ∈ R} ⊆ M(R), and

N denote {
∣∣∣∣ 0 b
0 0

∣∣∣∣ |b ∈ R} ⊆M(R)

(a) Show that W and Y are subrings of M(R).

Solution: W and Y are both nonempty. Since∣∣∣∣ a b
0 0

∣∣∣∣− ∣∣∣∣ c d
0 0

∣∣∣∣ = ∣∣∣∣ a− c b− d
0 0

∣∣∣∣
and ∣∣∣∣ a b

0 0

∣∣∣∣ ∣∣∣∣ c d
0 0

∣∣∣∣ = ∣∣∣∣ ac ad
0 0

∣∣∣∣
we see that W and Y are subrings. (Note that if we take a = c = 0 the elements in the
above equations are elements of Y .)

(b) Define a map g from W to Y by g(
∣∣∣∣ a b
0 0

∣∣∣∣) =
∣∣∣∣ a 0
0 0

∣∣∣∣ . Show that g is a homomor-

phism.

Solution:

g(
∣∣∣∣ a b
0 0

∣∣∣∣+ ∣∣∣∣ c d
0 0

∣∣∣∣) = g(
∣∣∣∣ a+ c b+ d

0 0

∣∣∣∣) =∣∣∣∣ a+ c 0
0 0

∣∣∣∣ = ∣∣∣∣ a 0
0 0

∣∣∣∣+ ∣∣∣∣ c 0
0 0

∣∣∣∣ =
g(
∣∣∣∣ a b
0 0

∣∣∣∣) + g(
∣∣∣∣ c d
0 0

∣∣∣∣)
and

g(
∣∣∣∣ a b
0 0

∣∣∣∣ ∣∣∣∣ c d
0 0

∣∣∣∣) = g(
∣∣∣∣ ac ad

0 0

∣∣∣∣) =∣∣∣∣ ac 0
0 0

∣∣∣∣ = ∣∣∣∣ a 0
0 0

∣∣∣∣ ∣∣∣∣ c 0
0 0

∣∣∣∣ =
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g(
∣∣∣∣ a b
0 0

∣∣∣∣)g(∣∣∣∣ c d
0 0

∣∣∣∣).
(c) Show that N is an ideal in W and that W/N is isomorphic to Y .

Solution: Since g is surjective and N is the kernel of g, the result follows from the First
Isomorphism Theorem

#7 Prove that a finite integral domain is a field.

Solution: Let R be a finite integral domain and let R∗ denote {r ∈ R|r 6= 0}. We must
show that any element r ∈ R∗ is a unit. For r ∈ R∗ let

fr : R→ R

be the map defined by
fr(s) = rs.

If fr(s1) = fr(s2) then rs1 = rs2 and so r(s1− s2) = 0. Since R is an integral domain and
r 6= 0 this implies s1−s2 = 0 and so s1 = s2. Thus fr is injective. Since R is finite, fr must
be surjective and so there is some u ∈ R such that fr(u) = 1R. But then ru = fr(u) = 1R,
so r is a unit.

#8 Let R be a ring and a, b ∈ R. Prove, directly from the definition of a ring, that
0Ra = a0R = 0R and that −(ab) = (−a)b = a(−b).
Solution: Note that if x, y ∈ R and x+ y = x, then

y = 0R + y = ((−x) + x) + y = (−x) + (x+ y) = (−x) + x = 0R.

Now
0Ra+ 0Ra = (0R + 0R)a = 0Ra

and so 0Ra = 0R. Similarly,

a0R + a0R = a(0R + 0R) = a0R

and so a0R = 0R. Finally,

ab+ (−a)b = (a+ (−a))b = 0Rb = 0,

so (−a)b = −(ab) and

ab+ a(−b) = a(b+ (−b)) = a0R = 0R,

so a(−b) = −(ab).
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