
THE TOPOLOGY OF KNITTING

REBECCA GORDON
UNIVERSITY OF ROCHESTER

1



2 REBECCA GORDON UNIVERSITY OF ROCHESTER

Contents

1. Introduction 3
2. Definitions 3
3. Theorems 7
4. Conclusion 8
5. Extra Knitting Nerdiness 9
References 10



THE TOPOLOGY OF KNITTING 3

1. Introduction

Knitting is not often thought to be very mathematical. However, upon reflection
one will determine that math is at the heart of knitting. It uses knots as its building
blocks are therefore is inextricably connected to knot theory. The other obvious
way that knitting may be ”mathematical” is through gauging. Different yarns
and different knitters result affects the size of a given pattern. Thus, before most
projects are started a sample gauge is done, in order to adjust the pattern properly
for the desired size. This of course will involve numbers and proportions, so even
if you ask veteran knitters if knitting is mathematical, they will give this example.
However, many knitters don’t even realize that the thought process behind knitting
is at its core mathematical. Inevitably a knitter will be in a situation where they
did something wrong, and they must deduce what they must have done, and what
they could do to correct it, from what they see. Similarly, if a knitter wants to
make something, how should they do it? How can they put the pieces together to
get what they want?

Another piece of evidence supporting the mathematics of knitting is the amount
of interest in the combination of the subjects. There are many mathematicians
who knit (as evidence by the many Moebius scarves and Klein Bottle hats). There
have also been a couple of AMS special sessions on the mathematics of knitting.
We will spend most of our time reviewing sarah-marie belcastro’s article ”‘Every
topological surface can be knit: a proof.”’

First we begin with some preliminary definitions.

2. Definitions

Definition 1. An m-manifold is a Hausdorff space X with a countable basis such
that each point xεX has a neighborhood that is homeomorphic with an open subset
of Rm.

A 2-manifold is called a surface.

Let us also define what we mean by knitting. Knitting typically uses two sticks
(i.e. needles) and uses one needle to hold stitches, and the other needle to ma-
nipulate the stitches. Thus the stitches are transferred from one needle to the
other, and the roles of the needles are switched once an entire row has been worked
through. There are a couple stitches which all the building blocks of all the other
stitches, namely the knit stitch and the pearl stitch. These two stitches are very
closely related. They are in fact inverses; if a knit stitch is made and the needles are
switched, that same stitch looks like a pearl stitch. It will not be necessary for us to
describe all the different variations of knitting (e.g. knitting with circular needles,
knitting with double-pointed needles, other more complicated stitches, etc.).

We also cast on when we create new stiches at the beginning of a project, and
we cast off when we knot off our stitches at the end of a project.

Our desired result is relatively intuitive. When we knit we are creating surfaces
from scratch and thus we would think that our options are varied enough that
we may make whatever surface we like. In fact, it seems that it may be a useful
method of modelling surfaces. Surfaces, even though they are two-dimensional,
require three or four dimensions to view them without self-intersections. So we will
prove that we can knit any topological space but this does not follow trivially.

We continue with more definitions:
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Definition 1. A surface is orientable if it is two-sided; a surface is nonori-
entable if it is one-sided.
Orientable surfaces are classified by the number of holes they contain; nonorientable
surfaces are classified by the number of twists they contain. The number of holes
or twists of a surface is called its genus. (Note: I don’t know why the spacing is
so weird here).

It is useful for us now to mention that not all knitting techniques are created
equally. A good example is that of a moebius strip. There are multiple methods
for knitting a moebius strip, and these methods fall into the following categories:

• those with an extrinsic twist and
• those with an intrinsic twist.

Here, as with many other subjects, it is better to come from within. That is to say,
the intrinsic twist is preferrable to the extrinsic twist. The extrinsic twist makes a
moebius strip much like one would with a strip of paper. A strip is knitted, and
then the knitter twists one end of the strip and connects it to the other end of
the strip. Alternatively, an instrinsic twist has the twist knitted into the strip as
part of the pattern. It may seem obvious that the intrinsic twist is easier, and this
is certainly the case. Twisting a strip as is required for a moebius strip is rarely,
if ever, used in knitting, and thus is very foreign and strange to most knitters.
Therefore, the extrinsic twist is much easier and therefore popular. However, the
instrinsic twist is preferrable because it holds the shape of the twist much better.
Instead of being superficially forced upon the pattern, the twist is build into the
pattern and thus is anchored in all the stitches. The difference between an extrinsic
twist moebius strip and an intrinsic twist moebius strip is obvious to those with a
trained eye; the extrinsic twists will often be smaller, and are unstable (they will
ripple through the strip quite easily).

Below is first an mobius strip with an intrinsic twist, then one with an extrinsic
twist.
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It is also important to note the practical restrictions of knitting a nonorientable
surface (like a moebius strip). We remind ourselves of the difference between an
embedding and an immersion:

Definition 1. Let f : X 7→ Y be an injective continuous map where X and Y are
topological spaces. Let Z be the image set f(X), considered as a subspaced of Y ;
then the function f ′ : X 7→ Z obtained by restricting the range of f is bijective. If
f ′ is a homeomorphism (i.e. if both f and f−1 are continuous) of X with Z, then
f is an imbedding of X in Y .

Contrastingly, an immersion is a differentiable map between differentiable man-
ifolds whose derivative is injective everywhere.

An immersion is a local imbedding, and an imbedding is a local immersion,
however the two are not the same. We note that nonorientable surfaces can be
immersed but not imbedded in R3. Thus they cannot be accurated knitted (i.e. in
R3) without self-intersections or boundaries. We deal with this by allowing minimal
boundaries and no self-intersections.

We will not only prove that all topological surfaces can be knit, but we will pro-
vide a process by which to do so. First we must give yarn its topological properties.
We consider yarn to be a long, thin, rubber-sheet rectangle. This way we may
construct a surface for two reasons:

• in order to create a surface using a finite amount of yarn the yarn would
have to be more than one-dimensional, and
• a surface could not be constructed with yarn of more than two-dimensions

(since it itself is only two-dimensions).

Thus we will show that we can cover any surface with such rectangles, similar to the
way yarn can weave a shape. We begin to see how we will form our surfaces: let us
visualize the usual process of knitting. Knitting is usually done with two needles,
where one row is completed, the needles are exchanged between the hands, and
the next row is knit. Thus we see that a strip is formed by working up and down
these rows, so that consecutive rows have touching sides. Thus we can construct
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our surface by connecting the sides of these long, thin, rubber-sheet rectangles.
With this technique we will see that the the sides of rectangles which touch other
sides are in the interior of our surface, and the sides which do not touch other
sides are in the boundary. We admit that we will make a concession for the sake
of mathematical coherence. In practice a stich can unravel on its own (perhaps in
an idealized situation with no forces working on the knitted piece this would not
happen, but this is not the case). However, in mathematics it cannot. We will
therefore assume that our yarn cannot unravel on its own.

We must also minimize the geometric characteristics of our knitted objects. We
wish to make topological conclusions about these knitted objects, and therefore it
is important that we make the objects as abstract as possible. Thus we will ignore
the usual dips and bumps in these pieces (and as they are made of knots they are
full of dips and bumps) and we will imagine them to be stretched thin. We will
therefore begin to imagine these knitted creations as a pieces of the plane stuck
together. This is a particularly useful way for us to imagine our knitting, since
it is known that every topological surface can be represented by a corresponding
even-sided polygon.

We can now give a few examples of how we would use knitting to correspond
to surfaces. Allow us to use the rows and columns as a sort of coordinate system.
We can therefore see that we can construct a sphere using a latitude and longitude
system; we can also constrcut a torus by having the rows pass through the holes so
the columns of rows then cover the torus. Other surfaces (like a Klein bottle) are
more difficult for us to draw neat parallels to, so we will take more time to do this.

Similarly to our description of making a moebius strip, there are a few different
ways to make a Klein bottle. They also follow under two categories, one more
extrinsic and one more intrinsic. The easier, extrinsic technique is to construct a
cylinder with a hole in its side and then pass an end of the cylinder through the hole.
The more complicated, intrinsic technique unifies the process and has the knitter
basically knitting through the hole. The difference between these two techniques is
not as obvious as it is for moebius strips, but it is still preferable to knit a Klein
bottle intrisically. It is using this more instrinsic technique that we may construct
a valid coordinate system for our knitting and therefore map a Klein bottle.

Below is a picture of a Klein Bottle Hat.
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Now we have finally have the tools we need to prove our first theorem. For
simplicities sake, we say that since skilled knitters can connect one ball of yarn and
another ball of yarn seamlessly, we will assume that we can have a arbitrarily long
strand of yarn.

3. Theorems

Theorem 1. A sphere can be knit with a single strand of yarn.

Proof. We use will use the following previously noted facts:
(1) any topological surface can be represented by an even-sided polygon, and
(2) we represent yarn as a long, thin, rubber-sheet rectangle

Thus all we need to show is that the polygonal representation of a sphere can itself
be represented by a long, thin, rubber-sheet rectangle. This is not very difficult;
we merely begin our rectangle at the bottom of the sphere, and then wind our
way up and around it. This is also one way we could go about actually knitting a
sphere. �

We work our way up in sophistication, now moving own to orientable services.
Before we do that however, we need one more definition.

Definition 1. Consider the space obtained from a 4n-sided polygonal region P by
means of the labelling scheme

(a1b1a1
−1b1

−1)(a2b2a2
−1b2

−1)...(anbnan
−1bn

−1).

This space is called the n-fold connected sum of tori and is denoted T#...#T .

In other words, a connected sum of two n-manifolds is created by the interiors
of their respective n-balls and joining the then punctured manifolds using a home-
omorphism. Thus, we see how we may create higher-dimensional manifolds from
lower-dimensional manifolds, and also break down high-dimensional manifolds into
lower-dimensional manifolds.

Theorem 1. Every orientable surface may be knit with a single strand of yarn.

Proof. We will induct on the genus of the surface.
The base case is when the genus is 1, i.e. a torus. We use the process described

earlier to create a torus from a strand of yarn. We merely wind the yarn through
the hole and work our way around the torus.

We use strong induction for the inductive hypothesis. Thus we assume that any
orientable surface of genus less than or equal to k may be knit with a single strand
of yarn.

We now consider an orientable surface of genus k + 1. We know that it is the
connected sum of an orientable surface of genus k and a torus. We already know
that both the surface of genus k and the torus may be knit. Now all that remains
to be shown is that these two surfaces can be knit together.

Both of these surfaces have no boundary, so in order to have stitches which can
connect them, we must cast on more stitches onto one of the surfaces. We then cut
along the final after of the other surface and use these two openings to connect the
surfaces. We would use a similar process in knitting such a surface. �

And now we come to our final proof.
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Theorem 1. Every nonorientable surface may be knit with a single strand of yarn.

Proof. We again induct on the genus.
We will use a parity argument and thus must consider two base cases: the

projective plane and the Klein bottle. We have already shown that these can be
knit.

We admit again that since nonorientable surfaces cannot be imbedded in R3 our
knitted objects must have either boundaries or self-intersection (and we chose to
have boundaries). Our process here will create boundaries when we cast off.

We now assume that any nonorientable surface of genus less than or equal to k
may be created using one piece of yarn.

Consider a nonorientable surface of genus k + 1. If k + 1 is odd, then it is
the connected sum of a nonorientable surface of genus k (which is even) with the
projective plane. If k + 1 is even, then it is the connected sum of a nonorientable
surface of genus k−1 (which will also be even) and a Klein bottle. By the inductive
hypothesis we can knit all these different shapes. Thus it remains to be shown that
we can connect these two shapes (depending on the parity of k). We use a similar
technique of grafting as we did with the previous proof. However here we must
realize that if k + 1 is odd then we will form a single boundary when cutting the
nonorientable surface of genus k and if k + 1 is even, we will also form a single
boundary when cutting the nonorientable surface of genus k − 1. We therefore
graft these single boundaries to their corresponding surfaces (either the projective
plane or the Klein bottle) and we are done. �

4. Conclusion

Thus we have shown that every topological surface can be knit. As we said
earlier, this should be rather intuitive. For many of the surfaces we would wish to
knit, all we would have to do is wrap yarn around them. However, surfaces with
larger genuses are somewhat more difficult to knit, and in these circumstances we
have see ntaht we must cast on extra stitches and graft surfaces of smaller genuses
together.
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5. Extra Knitting Nerdiness

Just for the fun of it, here are the beginnings of a sierpinski shawl (obviously it
can’t actually be a fractal, but it looks somewhat like it):
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