Algorithms - Day 5

Instructor: Pat Devlin — prd41@math.rutgers.edu

Summer, 2016

Reduction and NP-completeness

One of the most useful (and surprising) techniques in complexity theory is the idea of problem
reduction.

Definition 1 We say problem A reduces to problem B if and only if we can efficiently use an algorithm
that solves B to construct an algorithm to solve A.

Example 2 The problem “find the max element” reduces to the sorting problem.

Example 3 The problem “can this partially filled in Sudoku puzzle be completed?” reduces to the graph
coloring problem.



A reduces to B — B is at least as hard as A

Question 4 If we can solve the graph coloring problem in polynomial time, then we can solve Sudoku
puzzles in polynomial time. Why?

Definition 5 We say a problem, A, is N P-complete if and only if it is in NP, and every other problem
in NP can be reduced to A.

Remark: A problem is N P-complete essentially means that it’s the hardest that any problem in
NP could possibly be.

Proposition 6 If A is NP-complete, then P = NP if and only if A is in P.

Proof:



Proposition 7 If A is NP-complete, and A reduces to a problem B in N P, then B is N P-complete.
Proof:

The remarkable thing is that N P-complete problems exist. And in fact, they're everywhere!

All of the following problems are N P-complete!

Subset sum problem [homework 4, problem 2] (Given a set of integers, is there a subset
summing to 07)

Clique problem [homework 4, problem 5] (What’s the largest ¢ such that K is a subgraph of
G? [i.e., what’s the size of the largest ‘clique’ of G7])

Independent set problem [homework 4, problem 5] (What’s the size of the largest independent
set of G?7)

Graph coloring problem [homework 4, problem 7]
Is G Hamiltonian?

Is H a subgraph of G?

Vertex cover problem

Dominating set problem

Travelling salesman problem
Knapsack problem

Boolean satisfiability problem (SAT)
Longest common subsequence problem
Maximum bipartite subgraph

Art gallery problem

Generalized assignment problem
Pancake sorting problem

Set packing problem

IList of course taken from wikipedia article on ‘list of N P-complete problems.



More N P-complete problems coming from puzzles [the problems listed below are generalizations
of problems encountered in each of the following]

e Cubic
e Edge-matching puzzles
e Fillomino
e FreeCell
e Hashiwokakero
e Heyawake
e Instant insanity
e Kakuro
e KPlumber
e Kuromasu
e Light up
e Masyu
e Mastermind
e Minesweeper
e Nonograms [Pat likes these puzzles]
e Nurikabe
e Pearl puzzles
e SameGame
e Shanghai
e Slitherlink
e Sudoku
e Verbal arithmetic
Yet more N P-complete problems coming from classic games and video games
e Battleship
e Bejeweled
e Candy Crush Saga
e Combinatorial games (think like tic-tac-toe)
e Donkey Kong
e Legend of Zelda (entire series)
e Lemmings
e Mario

e Metroid



Othello

Phutball

e Pokémon
o Twixt
And some more N P-complete problems from various areas of combinatorics
e l-planarity
e 3-dimensional matching
e Assembling an optimal Bitcoin block
e Bandwidth problem
e Bipartite dimension
e Capacitated minimum spanning tree
e Cycle rank
e Degree-constrained spanning tree
e Domatic number
e Exact cover
e Feedback vertex set (and feedback arc set)
e Flow shop scheduling problem
e Graph intersection number
e Graph partition
e Longest path problem
e Maximum induced path
e Metric dimension of a graph
e Minimum k-cut
e Pathwidth
e Route inspection problem
e Set splitting

e Vehicle routing problem

(et cetera, et cetera, et cetera, et cetera, ...)

Since these are all N P-complete problems, if you solve any of these in polynomial time,
you can use that solution to solve every NP problem in polynomial time!

Weird fact: In computer science, problems seem to either obviously in P or obviously N P-
complete. The most striking possible exception to this is the graph isomorphism problem, which
seems to be neither N P-complete nor in P.



Example 8 Pat’s daily math email to his wife.



Example 9 Hilbert’s tenth problem and the halting problem.



Example 10 Quantum computing.



Example 11 Automated proofs.



Example 12 Combinatorial games.

10



