
Algorithms - Day 2

Instructor: Pat Devlin — prd41@math.rutgers.edu

Summer, 2016

Asymptotic notation

Etymology of algorithm

Roman numerals were used in Europe for a shockingly long time1. For example, the number 1448
was written as MCDXLVIII, which (combining with modern notation) can be broken down as

MCDXLV III = M + (CD) + (XL) + V + III = 1000 + (−100 + 500) + (−10 + 50) + 5 + 3.

In addition to be difficult to read, Roman numerals are also very difficult to work with [try adding
MCDXLVIII and DLXVIII (or try multiplying them!)]. Fortunately, during the centuries while
Europe was intellectually stagnant the rest of the world was doing great math. The positional
system we now use today (1448 + 568 = 2016) was invented in India and brought to the west
through a textbook written by a Persian mathematician named Al Khwarizmi (c. 780 – c. 850).
The book was translated into Latin as Algoritmi de numero Indorum (Algoritmi on the numbers of
the Indians). Those trained in this text were able to do the complex numerical procedures described
such as add, multiply, and divide numbers (and even compute

√
23). These numerical wizards were

known as algorists, and their craft was called algorism.

Big-O notation

Let’s recall the search problem and its algorithms from yesterday.

Example 1 (Search problem) Pat has a secret list of n distinct real numbers. Each number is
covered up so that you can’t see it, but Pat promises that the list is sorted by size (increasing from left
to right). You know that the number 100 is somewhere in that list, and your goal is to find it. You
are allowed to uncover any number you want, but every time you do this, you need to give Pat $1.

Silly Search:

begin
Uncover all of the numbers.
Find the number we want.

end

Better Search:

begin
Uncover the numbers one at a time.
If we find the number we want, then stop. Otherwise, uncover the next number.

end

1Portions of this lesson (i.e., this etymology) are adapted from the (great and free) online text Algorithms by
Dasgupta, Papadimitriou, and Vazirani.
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Binary Search:

begin
Uncover the middle number, and call its value x
if x = 100 then we found it, so STOP
if x < 100 then start over, but only use the half of the list bigger than x
if x > 100 then start over, but only use the half of the list smaller than x

end

Question 2 How many numbers do these algorithms need to uncover as a function of n? (As always, we
are only concerned about how many in the worst-case scenarios.) Determine the costs of these algorithms
for the values n = 103 and n = 106.

When we think about comparing two algorithms, we ultimately need to compare two functions
to see which is “bigger” than the other. When computer scientists do this, we use big-O notation.

Definition 3 Let f(n) and g(n) be two functions. We say f(n) = O (g(n)) to mean that there is a constant
M > 0 such that f(n) ≤Mg(n) for all sufficiently large n. (We read this as “f(n) is big-O of g(n)”)

You want to think of the statement f(n) = O (g(n)) as something like f(n) / g(n).

Saying f(n) = O (g(n)) essentially means that g(n) grows at least as fast as f(n). Statements like
these are about the asymptotic growth of the functions.

Example 4 If f(n) = 15n2 + 1050, then f(n) = O
(
n2
)

because the inequality f(n) ≤ 16n2 holds for all
sufficiently large values of n. (Notice that this inequality actually doesn’t work if n < 1025, but when we
use big-O notation, we only care about what’s happening when n is [very] large.)

Example 5 Using big-O notation can help us better understand complicated expressions. For instance,√
n6 + 2n4 + 3n3 + 8

√
n + 1000 = O

(
n3) .
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Example 6 Argue each of the following:

• n3 + 3n2 − 1 = O
(
n3
)

• n3 + 3n2 − 1 = O
(
n10
)

• n5 + 6

n + 20
= O

(
n4
)

• 10−n = O (1)

• 15(n!) = O (nn)

Question 7 Sort the following functions in terms of asymptotic growth. (i.e., arrange them in a list
f1, f2, f3, . . . so that f1 = O (f2) and f2 = O (f3), et cetera)

n, lg(n), n2, 2n, n100, 1, 3n, n3, lg2(n),
√
n, n!, nn, 22n, n lg(n)

A more precise way to describe asymptotic growth is as follows.

Definition 8 Let f(n) and g(n) be two functions. We say f(n) = Θ(g(n)) to mean that there are constants
M1 > 0 and M2 > 0 such that M1g(n) ≤ f(n) ≤M2g(n) for all sufficiently large n. (We read this as “f(n)
is theta of g(n)”)

You want to think of the statement f(n) = Θ(g(n)) as something like f(n) ≈ g(n).
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Proposition 9 If f(n) = Θ(g(n)) then g(n) = Θ(f(n)).

Proof:

Proposition 10 f(n) = Θ(g(n)) if and only if f(n) = O (g(n)) and g(n) = O (f(n)).

[Proof left as an exercise.]

When you’re studying algorithms, a statement like f(n) = Θ(g(n)) means that f and g are
essentially interchangeable. This is often very convenient.

Example 11 If f(n) = 3n2 + 1000n− 10000, then f(n) = Θ(n2).

Question 12 For each of the following, prove f(n) = Θ(g(n)) or give an argument why this is not the
case.

• f(n) =
√

n6 + 2n4 + 3n3 + 8
√
n + 1000 and g(n) = n3

• f(n) = n3 + 3n2 − 1 and g(n) = n3

• f(n) = n3 + 3n2 − 1 and g(n) = n10

• f(n) = 10−n and g(n) = 1

• f(n) = log2(n) and g(n) = log31(n)
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Question 13 For each of the search algorithms we did yesterday (and at the front of today’s notes), find
the asymptotic growth for their cost. Use Θ-notation. How does your answer change if Pat changes the
price to $18 per question? What if the price were only $0.5 per question?

In practice, determining the asymptotic growth of a function usually amounts to using the fol-
lowing simple rules. [Proofs are left as exercises.]

Theorem 14 Suppose f1(n) = O (g1(n)) and f2(n) = O (g2(n)). Then we have

• f1(n) + f2(n) = O (g1(n) + g2(n))

• f1(n)× f2(n) = O (g1(n)× g2(n))

• for all constants c > 0, (f1(n))c = O (g1(n)c).

Theorem 15 Suppose f1(n) = Θ(g1(n)) and f2(n) = Θ(g2(n)). Then we have

• f1(n) + f2(n) = Θ(g1(n) + g2(n))

• f1(n)× f2(n) = Θ(g1(n)× g2(n))

• f1(n)/f2(n) = Θ(g1(n)/g2(n))

• for all constants c > 0, (f1(n))c = Θ(g1(n)c).

If we also know that g1(n) = O (g2(n)), then g1(n) + g2(n) = Θ(g2(n)).

With these rules, determining asymptotic growth becomes extremely easy.

Example 16 Find the asymptotic growth of each of the following.

• 3n2 +
√

8n5 + lg(n) + 18

• 9 3
√

100n! + nn + n37

• 8n2 lg(n) + n lg(n)2

• n8 + 42

n13 + 4n4 + 107
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Question 17 Pick an algorithm from yesterday’s homework, and imagine how the algorithm would gener-
alize as the size of the problem increases (e.g., n could be the number of bottles, the height of the building,
the number of spheres, or the size of the list of numbers). Find the asymptotic growth for the “cost” of the
algorithm. (Here “cost” is either the number of tests, drops, or questions required.)
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