
Algorithms - Day 1

Instructor: Pat Devlin — prd41@math.rutgers.edu

Summer, 2016

Overview

An algorithm is a step-by-step process for accomplishing something. Consider for example the
following very simple (and silly) algorithm.

Example 1 Pat has a canvas bag with items in it. What does he want you to do with these items?

Or as perhaps a more interesting example, consider the following problem.

Example 2 (Search problem) Pat has a secret list of 31 distinct real numbers. Each number is
covered up so that you can’t see it, but Pat promises that the list is sorted by size (increasing from left
to right). You know that the number 100 is somewhere in that list, and your goal is to find it. You
are allowed to uncover any number you want, but every time you do this, you need to give Pat $1.

What do you think you should do to find the number while paying as little as possible? If you used
your strategy, how much would it cost you?

1



Here is a very silly algorithm for the search problem.

Silly Search:

begin
Uncover all of the numbers.
Find the number we want.

end

Although Silly Search seems to solve the problem, we may be concerned that it is too expensive.
A slightly better algorithm might be the following.

Better Search:

begin
Uncover the numbers one at a time.
If we find the number we want, then stop. Otherwise, uncover the next number.

end

Whenever we come up with an algorithm, we should always ask ourselves three questions.

(1) Does the algorithm work?

(2) How good is it?

(3) Can we do better?

Question 3 Does Silly Search work (i.e., does it always make sense, and will it always solve the search
problem)? How much does it cost in the best-case scenario? How much in the worst-case scenario? What
about Better Search? What about your algorithm?

2



An algorithm can be written down and described in many ways. For us, it doesn’t matter how
you do it as long as it is unambiguous and easy to understand. Here some ways you could do this.

• in words (see previous page)

• with a flow chart

• with a decision tree [follow from top to bottom, and the leaves have output]

Example 4 (Guess the thing) The game “twenty questions” is a guessing game for two people. They
agree on a set of objects S, and the first player secretly selects an element of S. Then the second player
asks “yes/no” questions until she is able to identify which object the first player selected.

Make and analyze an algorithm to guess which of the following objects I’m thinking of

S = {cat, dog, pencil, pizza, vuvuzela}.

3



A quick review of logarithms: When someone says logb(x) = y is true, they mean by = x. In
computer science, we often write log2(x) as simply lg(x). For example,

x lg(x)
1 0
2 1
3 1.5849625. . .
4 2
5 2.321928. . .
6 2.5849625. . .
7 2.8073549. . .
8 3

A few important properties of logarithms are

lg(xy) = lg(x) + lg(y), lg(2x) = x, logb(x) =
lg(x)

lg(b)
.

For us, the important things to know about lg(x) are that (a) lg(x) is a very small number relative
to x, and (b) lg(x) is essentially the number of times you need to cut x in half until you get a
number less than 2.

Lower bounds: answering ‘can we do better?’

Often when we want to understand how well an algorithm does, we are concerned about how long
it takes in the worst-case scenario. The most useful result about this is the following:

Theorem 5 (Information theory lower bound) Suppose an algorithm needs to figure out which
of N possible options is correct, and it can only ask “yes/no” questions. Then there must be a sce-
nario where it has to ask at least lg(N) questions.

Proof:

4



Question 6 What does the information theory lower bound say about the ‘guess the thing’ problem?

Theorem 7 (Information theory lower bound: generalized) Suppose an algorithm needs to
figure out which of N possible options is correct, and it can only ask multiple-choice questions that
have k different options. Then there must be a scenario where it has to ask at least logk(N) =
lg(N)/ lg(k) questions.

[Proof is left as an exercise]

Question 8 What does this information theory lower bound say about the search problem? Why can’t
we use k = 2 for this? How does this bound compare to your algorithm?

5



Question 9 Suppose we want an algorithm that can distinguish between N = n! different possibilities,
and at each step, it can only ask a “yes/no” question. Find a lower bound on how many questions it must
ask in the worst-case scenario. (Note: I’m asking you to approximate lg(n!). Try to get a lower estimate
as well as an upper estimate on this.)

6


