Algorithms Homework - Day 2

Instructor: Pat Devlin — prd41@math.rutgers.edu

Summer, 2016
(1) Prove $f(n)=\Theta(g(n))$ if and only if $f(n)=\mathcal{O}(g(n))$ and $g(n)=\mathcal{O}(f(n))$.
(2) Prove each of the following
(a) If $f(n)=\mathcal{O}(g(n))$ then $k f(n)=\mathcal{O}(g(n))$ for all $0<k \in \mathbb{R}$.
(b) If $f(n)=\mathcal{O}(g(n))$ and $g(n)=\mathcal{O}(h(n))$, then $f(n)=\mathcal{O}(h(n))$.
(c) If $f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n))$, then $f(n)=\Theta(h(n))$.
(3) Prove each of the following
(a) If $f_{1}(n)=\mathcal{O}\left(g_{1}(n)\right)$ and $f_{2}(n)=\mathcal{O}\left(g_{2}(n)\right)$, then $f_{1}(n)+f_{2}(n)=\mathcal{O}\left(g_{1}(n)+g_{2}(n)\right)$.
(b) If $f_{1}(n)=\mathcal{O}\left(g_{1}(n)\right)$ and $f_{2}(n)=\mathcal{O}\left(g_{2}(n)\right)$, then $f_{1}(n) \times f_{2}(n)=\mathcal{O}\left(g_{1}(n) \times g_{2}(n)\right)$.
(c) If $f_{1}(n)=\Theta\left(g_{1}(n)\right)$ and $f_{2}(n)=\Theta\left(g_{2}(n)\right)$, then $f_{1}(n)+f_{2}(n)=\Theta\left(g_{1}(n)+g_{2}(n)\right)$.
(d) If $f_{1}(n)=\Theta\left(g_{1}(n)\right)$ and $f_{2}(n)=\Theta\left(g_{2}(n)\right)$, then $f_{1}(n) \times f_{2}(n)=\Theta\left(g_{1}(n) \times g_{2}(n)\right)$.
(4) Prove or disprove each of the following
(a) If $f(n)=\mathcal{O}(g(n))$, then $\lg (f(n))=\mathcal{O}(\lg (g(n)))$.
(b) If $f_{1}(n)=\Theta\left(g_{1}(n)\right)$ and $f_{2}(n)=\Theta\left(g_{2}(n)\right)$, then $\left|f_{1}(n)-f_{2}(n)\right|=\Theta\left(\left|g_{1}(n)-g_{2}(n)\right|\right)$.
(c) If $f(n)=\Theta(g(n))$, then $2^{f(n)}=\Theta\left(2^{g(n)}\right)$.
(5) Prove that $\lg (n!)=\Theta(n \lg (n))$. (Hint: for the lower bound, use the fact that for all n, $n!\geq n \times(n-1) \times \cdots \times\lceil n / 2\rceil$.) Try to improve your result as much as possible.
(6) Suppose k is a fixed integer (like $k=2$ or $k=100$). Find a simple function $g(n)$ such that

$$
1^{k}+2^{k}+3^{k}+\cdots+n^{k}=\Theta(g(n))
$$

Try to generalize and improve this result.
(7) Recall the Fibonacci numbers are given by $F_{n}= \begin{cases}1, & \text { if } n=1 \text { or } n=2 \\ F_{n-1}+F_{n-1}, & \text { if } n>2 .\end{cases}$
(a) Prove by induction that $F_{n} \geq 2^{n / 2}$ for all $n \geq 6$.
(b) Find a constant $c<1$ for which $F_{n} \leq 2^{c n}$ for all $n \geq 1$, and prove your result.
(c) Find a function $g(n)$ so that $\lg \left(F_{n}\right)=\Theta(g(n))$.
(d) Try to improve your results as much as you can.
(8) (Hint: for this problem, you can basically ignore the $\lfloor x\rfloor$ [i.e, the 'round down'] part.)
(a) Suppose $T_{1}(n)$ is a function satisfying $T_{1}(n)=T_{1}(\lfloor n / 2\rfloor)+3$ and $T_{1}(1)=1$. Find a function $g(n)$ such that $T_{1}(n)=\mathcal{O}(g(n))$.
(b) Suppose $T_{2}(n)$ is a function satisfying $T_{2}(n)=T_{2}(\lfloor n / 2\rfloor)+n$ and $T_{2}(1)=1$. Find a function $g(n)$ such that $T_{2}(n)=\mathcal{O}(g(n))$.
(c) Suppose $T_{3}(n)$ is a function satisfying $T_{3}(n)=2 T_{3}(\lfloor n / 2\rfloor)+1$ and $T_{3}(1)=1$. Find a function $g(n)$ such that $T_{2}(n)=\mathcal{O}(g(n))$.
(d) Try to generalize and improve your results.

