Math 250 - Introduction to Linear Algebra - Section 11 Instructor Pat Devlin - Spring 2013

Updated February 12, 2013
Text: Spence, Insel \& Friedberg Elementary Linear Algebra: A Matrix Approach, 2nd Edition ISBN \# 978-0-13-187141-0, Prentice-Hall, Upper Saddle River, NJ 07458
This is a tentative syllabus for the course. Time permitting, we will cover additional topics including applications of linear algebra and perhaps topics from chapter 7. There are weekly quizzes in class and weekly homework assignments (see Sakai page). The exams will be cumulative. Topics in italics may be omitted. The exact structure of the course may vary.

Syllabus		
Lecture	Reading	Topics
1	1.1, 1.2	Matrices, Vectors, and Linear Combinations
2	1.3	Systems of Linear Equations via Matrices
3	1.3, 1.4	Reduced Row Echelon Form and Gaussian Elimination
	App. E	Uniqueness of Reduced Row Echelon Form
4	1.4, 1.6	Properties of Rank; Span of a Set of Vectors
5	1.6, 1.7, 4.1	Geometry of Span, Linear Dependence and Linear Independence, Introduction to Bases, and Introduction to Subspaces
6	4.1, 4.2	Subspaces, Null Space and Column Space of a Matrix, Connections Between Geometry of the Columns of a Matrix (e.g., Linear Independence and Span) and its Rank
	App. A	Sets (the symbols $\mathbb{R}, A \subseteq B, x \in S$, and [ideally] notation such as $\left.\left\{x \in \mathbb{R}: x^{2}>1\right\}\right)$
7	4.2	Basis and Dimension
8	2.1, 2.7	Linear Transformations, Matrices as Functions
	App. B	Functions (domain, codomain [range], image, coposition, one-to-one, onto, invertibility, and inverses)
9	2.1, 2.8	Composition of Linear Transformations, Matrix Multiplication
10	2.3, 2.4, 2.8	Invertibility, Matrix Inverses, Inverses of Linear Transformations
?	2.5	Partitioned Matrices and Block Multiplication
?	2.6	LU Decomposition of a Matrix
?	7.1-7.4	General Vector Spaces
12	4.3	Dimension of Fundamental Spaces, Rank-Nullity Theorem
13	4.4	Change of Basis, Similar Matrices
14		Catch Up and Review
15	Midterm Exam ${ }^{1}$	
16	3.1	Determinants; Cofactor Expansions
17	3.2	Properties of Determinants
18	5.1	Eigenvalues and Eigenvectors
19	5.2	Characteristic Polynomial
20	5.3, 6.6	Diagonalization of a Matrix; Diagonalization of Symmetric Matrices
21	5.5	Examples of Diagonalization
22	6.1	Geometry of Vectors; Projection onto a Line
23	6.2	Orthogonal Sets of Vectors;
		Gram-Schmidt Process; $Q R$ factorization
24	6.3	Orthogonal Projection; Orthogonal Complements
?	6.4	Least Squares; Normal Equations
?	6.5, 6.6	Orthogonal Matrices
?	6.6	Diagonalization of Quadratic Forms
		Spectral Decomposition for Symmetric Matrices
28		Catch up and review
	Final Exam	(Class Hour Schedule)

[^0]
[^0]: ${ }^{1}$ The midterm exam is Thursday March 14 in class (the class before spring break).

