\qquad

This quiz requires little to no computational work. You have 8 minutes.

1. (5 points) Let $A=\left(\begin{array}{lll}a & 2 & c \\ 1 & b & 3\end{array}\right)$, let $\vec{u}=\binom{-2}{\pi}$, and let $\vec{v}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$.
(a) Is A a 2×3 matrix or a 3×2 matrix? What is the $(1,2)$-entry of A ?
(b) Does $A \vec{u}$ make sense? If so, what is it?
(c) Does $A \vec{v}$ make sense? If so, what is it?
2. (5 points) Circle each matrix below that is in reduced row echelon form, and put an X through those that are not.

$$
\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0
\end{array}\right) \quad\left(\begin{array}{ccccc}
0 & 1 & 0 & -17 & 0 \\
0 & 0 & 1 & \pi & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
0 & 1 & a & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

3. (10 points) Suppose $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{k}$ are vectors in \mathbb{R}^{n}, and suppose A is the matrix given by

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{u}_{1} & \vec{u}_{2} & \cdots & \overrightarrow{u_{k}} \\
\mid & \mid & & \mid
\end{array}\right) .
$$

Circle every statement below that is equivalent to (the exact same thing as) the following statement (put an X through those that are not):

$$
\text { "The vector } \vec{b} \text { is in } \operatorname{Span}\left(\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{k}\right\}\right) \text {." }
$$

(a) The vector \vec{b} can be written as a linear combination of the vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{k}$.
(b) There are scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ such that $\vec{b}=\sum_{i=1}^{k} \lambda_{i} \vec{u}_{i}=\lambda_{1} \vec{u}_{1}+\lambda_{2} \vec{u}_{2}+\cdots+\lambda_{k} \vec{u}_{k}$.
(c) The matrix equation $A \vec{x}=\vec{b}$ is consistent.
(c) The matrix equation $A \vec{x}=\vec{b}$ is inconsistent.
(e) There exists a vector \vec{x} in \mathbb{R}^{n} such that $A \vec{x}=\vec{b}$.
(f) There exists a vector \vec{x} in \mathbb{R}^{k} such that $A \vec{x}=\vec{b}$.
(g) The rref of the matrix A does have a row of the form $(0,0, \ldots, 0,1)$.
(h) The rref of the matrix A does not have a row of the form $(0,0, \ldots, 0,1)$.
(i) The rref of the augmented matrix $(A \mid \vec{b})$ does have a row of the form $(0,0, \ldots, 0,1)$.
(j) The rref of the augmented matrix $(A \mid \vec{b})$ does not have a row of the form $(0,0, \ldots, 0,1)$.

