Math 250 - Section C2
Fall 2013
Midterm 2
November 13, 2013
Time Limit: 80 Minutes
Instructor: Pat Devlin

This exam has 10 pages (including this cover page) and 9 problems. Check to see if any pages are missing. Put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:

- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the place without a clear ordering is a pain in the butt to read.
- Mysterious or unsupported answers rarely receive credit. Some answers require no work. However, the majority require at least some work or explanation or both.
- When in doubt, show work and explanations. But no question requires all that much explanation-don't waste your time writing a book!
- If you need more space, use the back of the pages; clearly indicate when you have done this.

Do not write in the table to the right.

Problem	Points	Score
1	20	
2	25	
3	25	
4	25	
5	20	
6	20	
7	20	
8	25	
9	0	
Total:	180	

1. (20 points) Consider the following matrices and vectors:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 4 & 0 \\
2 & 1 & -1
\end{array}\right), \quad B=\left(\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right), \quad C=\left(\begin{array}{llll}
2 & 2 & 1 & 1 \\
7 & 7 & 2 & 0 \\
0 & 0 & 2 & 0 \\
6 & 6 & 9 & 0
\end{array}\right), \quad D=\left(\begin{array}{cc}
3 & 2 \\
0 & -1 \\
2 & 1
\end{array}\right), \\
\vec{u}=\binom{-2}{1}, \quad \vec{v}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), \quad \vec{w}=\binom{4}{-2} .
\end{gathered}
$$

Compute each expression given or state that it does not make sense.
(a) $A \vec{v}+\vec{u}$
(b) $\operatorname{det}(C)$
(c) $B^{T} D-3 A^{T}$
(d) $\operatorname{det}(\vec{w})-\operatorname{det}(\vec{u})$
(e) $B D^{T}$
2. (25 points) Consider the following matrices

$$
M=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{ccc}
-6 & -3 & 1 \\
5 & 2 & -1 \\
2 & 3 & -5
\end{array}\right)
$$

(a) What is the characteristic polynomial of M ? What are the eigenvalues of M ? What is the algebraic multiplicity of each of its eigenvalues?
(b) The matrix A has characteristic polynomial $p_{A}(t)=-(t+1)(t+4)^{2}$. Find a basis for each eigenspace of A, and find the geometric multiplicity of each of its eigenvalues.
3. (25 points) Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation satisfying

$$
T\left(\left[\begin{array}{c}
3 \\
-5
\end{array}\right]\right)=\left[\begin{array}{c}
8 \\
-16 \\
0
\end{array}\right], \quad \text { and } \quad T\left(\left[\begin{array}{l}
8 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
8 \\
-16 \\
0
\end{array}\right]
$$

Find a basis for $\operatorname{Im}(T)$ and for $\operatorname{null}(T)$. Be sure to either show your work or (if you didn't do that much work) explain how you know your answer is correct.
4. (25 points) Let W be the set of vectors in \mathbb{R}^{4} of the form $W=\left\{\left[\begin{array}{c}r \\ s \\ t \\ r\end{array}\right]: r, s, t \in \mathbb{R}\right\}$ (that is, W is the set of all vectors in \mathbb{R}^{4} whose first and fourth entries are equal). Then W is a subspace.
(a) Find a basis for W. What is the dimension of W ?
(b) Find a set of vectors in W that are linearly independent but that do not span W.
(c) Find a set of vectors in W that span W but that are not linearly independent.
(d) Let $V=\operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]\right\}\right)$. Is $\left\{\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 8 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 2 \\ 1 \\ 9\end{array}\right]\right\}$ a basis for V ? Explain.
5. (20 points) Consider the following matrix and vectors

$$
A=\left(\begin{array}{ccc}
-7 & -3 & -6 \\
0 & -4 & 0 \\
3 & 3 & 2
\end{array}\right), \quad \vec{w}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \vec{y}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right], \quad \text { and } \quad \vec{z}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] .
$$

(a) Are any of the vectors $\vec{w}, \vec{x}, \vec{y}$, or \vec{z} eigenvectors of A ? For those that are, what are their corresponding eigenvalues?
(b) For each eigenvector in part (a), compute what happens when you multiply that vector by $A^{8675309}$. [You (of course!) don't need to simplify any numbers that show up.]
6. (20 points) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$ be a linear transformation.
(a) What is the largest possible value for $\operatorname{dim}(\operatorname{Im}(T))$? What is the smallest possible value for $\operatorname{dim}(\operatorname{Im}(T))$?
(b) For each of the possible values of $\operatorname{dim}(\operatorname{Im}(T))$ found in (a), what would be $\operatorname{dim}(\operatorname{null}(T))$? In particular, what is the largest possible value for $\operatorname{dim}(\operatorname{null}(T))$, and what is the smallest possible value for $\operatorname{dim}(\operatorname{null}(T))$?
(c) Is it possible for T to be one-to-one ${ }^{1}$? Explain.
(d) Is it possible for T to be onto ${ }^{2}$? Explain.

[^0]7. (20 points) Consider
\[

A=\left[$$
\begin{array}{ccccc}
1 & 3 & -1 & -1 & -1 \\
1 & 2 & 0 & 1 & -1 \\
2 & 5 & -1 & 0 & -2 \\
2 & 3 & 1 & 4 & -1
\end{array}
$$\right], \quad which has rref \quad \operatorname{rref}(A)=\left[$$
\begin{array}{ccccc}
1 & 0 & 2 & 5 & 0 \\
0 & 1 & -1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}
$$\right] .
\]

(a) What is the rank and nullity of A ?
(b) Are the columns of A linearly independent? Do the columns of A span \mathbb{R}^{4} ? Explain.
(c) Find a basis for the row space of A. What's the dimension of $\operatorname{row}(A)$?
(d) Find a basis for the column space of A. What's the dimension of $\operatorname{col}(A)$?
(e) Find a basis for the null space of A. What's the dimension of null (A) ?
8. (a) (7 points) What does it mean to say that \vec{x} is an eigenvector of A corresponding to the eigenvalue $\lambda=5$?
(b) (7 points) What does it mean to say that a space is 13 -dimensional? [Note: You may not reference \mathbb{R}^{13} in your answer.]
(c) (11 points) What properties must a set of vectors have to be called a subspace? Give an example of set of vectors in \mathbb{R}^{2} that is not a subspace (your example can be a drawing or a description if you prefer).

9. Extra credit:

(a) Suppose M is an $n \times n$ matrix such that 0 is not an eigenvalue of M. Then what can you say about the column space of M ? [Hint: what can you say about the rank of M ?]
(b) Let A and B be any appropriately-sized matrices such that $A B$ makes sense. Show that $\operatorname{null}(B)$ is a subspace of $\operatorname{null}(A B)$ and use this to $\operatorname{show} \operatorname{rank}(B) \geq \operatorname{rank}(A B)$.
(c) An $n \times n$ matrix, C, is called nilpotent iff $C^{n}=0$ (the zero-matrix). Show that if C is nilpotent, then all its eigenvalues must be equal to 0 . [Hint: you just need to show that if $C \vec{x}=\lambda \vec{x}$ and $\vec{x} \neq 0$, then $\lambda=0$. What would $C^{n} \vec{x}$ be?]
(d) On the other hand, use the Cayley-Hamilton theorem ${ }^{3}$ to show that if all the eigenvalues of a matrix are equal to 0 , then that matrix is nilpotent.

[^1]
[^0]: ${ }^{1}$ Recall that one-to-one means that no matter what \vec{b} is, the equation $T(\vec{x})=\vec{b}$ always has at most one solution.
 ${ }^{2}$ Recall that onto means that no matter what \vec{b} is, the equation $T(\vec{x})=\vec{b}$ always has at least one solution.

[^1]: ${ }^{3}$ Recall the Cayley-Hamilton theorem is that if you "plug in" any matrix into its characteristic polynomial, then you get the zero-matrix.

