Math 152 - Summer 2013
Quiz 3 - June 18, 2013 Name: \qquad

This quiz requires some computational work.

1. (6 points) For $n \geq 1$, let $f(n)=\frac{(n+1) n}{2}$. Completely simplify the expression $\sum_{m=3}^{5}(-1)^{f(m)}$.
2. (8 points) Let $\left\{a_{n}\right\}$ be recursively defined as $a_{0}=0$ and $a_{n}=2 a_{n-1}+1$ for all $n \geq 1$. Then for all $n \geq 0$, let $\left\{S_{n}\right\}$ be defined as $S_{n}=\sum_{k=0}^{n} a_{k}$ (for instance we have $S_{0}=\sum_{k=0}^{0} a_{k}$ and $S_{5}=\sum_{k=0}^{5} a_{k}$). Complete this table. (Hint: fill out the column for a_{n} first.)

n	a_{n}	S_{n}
0	0	0
1		
2		
3		
4		

3. (6 points) For all $k \geq 1$, let P_{k} be defined as $P_{k}=\frac{k^{2}-1}{2 k^{2}+k}+\frac{3^{k}}{k!}$. Does the sequence P_{k} converge? If so, find its limit.
