Math 152 - Section C2 - Summer 2013
 Workshop 4

Instructor Pat Devlin

Worked on Wednesday June 12, 2013
Due Monday June 17, 2013

Problem 1: Let's find a formula for e, everybody's favorite mathematical constant ${ }^{1}$! For this problem, recall that n ! is the "factorial" function, which is equal to $n!=1 \times 2 \times 3 \times 4 \times \cdots \times(n-1) \times n$ (also recall that 0 ! $=1$ by convention).
(a) First show that $e=\frac{1}{0!}+e \int_{0}^{1} e^{-t} d t$ simply by integrating (again, recall that $0!=1$).
(b) Now! Use integration by parts to show that $\int e^{-t} d t=t e^{-t}+\int t e^{-t} d t$. Then use part (a) to show the formula $e=\frac{1}{0!}+\frac{1}{1!}+e \int_{0}^{1} \frac{t}{1!} e^{-t} d t$.
(c) Use integration by parts again to show $e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+e \int_{0}^{1} \frac{t^{2}}{2!} e^{-t} d t$.
(d) Integrate by parts yet again to show $e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+e \int_{0}^{1} \frac{t^{3}}{3!} e^{-t} d t$.
(e) In general, if we just keep integrating by parts, then this suggests the following (true!) formula ${ }^{2}$ for e

$$
e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

Using a calculator ${ }^{3}$, compute $\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{10!}$. How does this compare to the value of $e ?$

[^0]Problem 2 Fun fact: $\int_{0}^{1} \frac{3 x+7}{(x+1)(x+2)(x+3)} d x=\ln (2)$. Show that this is correct.

Problem 3: Suppose A is a positive real number and m_{A} is the average value of $\sin ^{3}(A x)$ on the interval $[0,2]$.
(a) Compute m_{A}. (Hint: this answer will have several terms and will not be simple.)
(b) What is $\lim _{A \rightarrow \infty} m_{A}$? (Hint: this answer should be simple.) Explain briefly why it is correct. You may refer to graphs of functions like $\sin ^{3}(x), \sin ^{3}(10 x), \sin ^{3}(100 x)$ [et cetera] if that is helpful.

[^0]: ${ }^{1}$ You'll have to wait a week until we get a formula for for π.
 ${ }^{2}$ We'll mathematically prove this formula is in fact true with 'Taylor series', but this problem is already very close to a proof.
 ${ }^{3}$ Standard calculators cannot go much further than this since they will run out of digits.

