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RESEARCH STATEMENT
Pat Devlin (prd41@math.rutgers.edu)

My research interests are in discrete mathematics, which includes combinatorics, graph theory,
and theoretical computer science. I tend to gravitate to problems that are easy to state yet
have proved resistant to established approaches. I especially like problems that seem potentially
amenable to other, ideally surprising areas of mathematics such as algebra, Fourier analysis,
topology, and probability.

I have written on diverse topics in discrete math including algorithms [11, 7], hypergraphs
[14], sequences [12, 15], information theory [3], and extremal combinatorics [13, 10]. To provide
a more cohesive narrative, I discuss here four papers connected not by content so much as by
their association with a main theme of my research: probability in discrete mathematics.

I offer quick, high-level accounts of each of the four followed by some discussion of continuing
research plans. A more in-depth research statement is available on my webpage.

Matrices with large permanent [7]

Leonid Gurvits [19] proved that the permanent of an n × n matrix A over C is bounded by
its operator norm via |perm(A)| ≤ ‖A‖n. Motivated by questions related to boson sampling
and quantum computing, Scott Aaronson and Travis Hance [1] asked for a characterization of
matrices for which this bound is nearly tight. Appealing to inverse Littlewood-Offord theory
(developed by Terry Tao and Van Vu), several papers [2, 22] attempted to address this question
with only limited successs. We settled it by proving (a quantified version of) the following,
which was a conjecture of Aaronson.

Theorem 1. If |perm(A)| ≥ ‖A‖n/n100, then A must have a readily identifiable form where
virtually every row and column is dominated by a single entry of very large modulus.

Although the result deterministically holds for all matrices over C, our proof is entirely proba-
bilistic, using Talagrand’s inequality, hypercontractivity, and Khintchine’s inequality. It would
be interesting to extend our results to obtain deterministic algorithms approximating |perm(A)|
to within an additive error of ±ε‖A‖n, which was a driving motivation of [1].

Permutations and entropy [3]

We prove the following, which was conjectured by Tom Leighton and Ankur Moitra [21] in
connection with the algorithmic problem of sorting under partial information.

Theorem 2. If σ is a random (not necessarily uniform) permutation of {1, 2, . . . , n} satisfying

|P(σ(i) < σ(j))− 1/2| > ε ∀i 6= j (1)

for fixed ε > 0, then σ has entropy at most (1− δ) log(n!), where δ > 0 depends only on ε.

That is, the assumption (1) implies a significant loss of information relative to the entropy of
a uniform distribution (namely log(n!)). Leighton and Moitra proved this in the special case
where P(σ(i) < σ(j)) > 1/2 + ε for all i < j. Our proof uses a mix of probabilistic and graph
theoretic techniques including a version of Szemerédi’s regularity lemma, a coupling argument,
and martingale concentration results. Continuing our work on this, we would like to better
understand the dependence of δ on ε, for which we conjecture δ = Cε4 should suffice.
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Stability in the Erdős–Ko–Rado theorem [13]

For n ≥ 2k + 1, the Kneser graph, K(n, k), has as vertices the k-element subsets of [n] :=
{1, 2, . . . , n} with vertices A and B adjacent iff A ∩ B = ∅. Recall that the independence
number, α(G), of a graph G is the maximum size of a set of vertices containing no edges. In the
language of Kneser graphs, the classical Erdős–Ko–Rado theorem [17] says α(K(n, k)) =

(
n−1
k−1

)
(and that a largest independent set consists of all k-sets containing some fixed element of [n]).

Following a trend of considerable recent interest, Béla Bollobás and various co-authors [8]
considered this classical result in a probabilistic setting and asked when the same behavior is
likely to hold in the random subgraph Kp(n, k) ⊆ K(n, k) gotten by retaining edges indepen-
dently with probability p.

Combined with earlier work, our results completely determine the order of magnitude of
the “threshold” for this property. A formal discussion is given in the unabridged research
statement on my webpage. Here, I just highlight one case addressing what both [8] and [6]
identified as the most interesting aspect of the problem:

Theorem 3. There is a fixed ε > 0 such that for n = 2k + 1 and p > 1− ε,

lim
n→∞

P[α(Kp(n, k)) = α(K(n, k))] = 1.

The key steps of the proof rely on spectral techniques and results from Fourier analysis on the
slice to show that certain collections of vertices contain many edges in the Kneser graph. A
natural conjecture is that the above result should hold for all p > 3/4; though proving this
conjecture seems quite difficult, it is the most obvious direction for future research.

Fractional matchings in k-out hypergraphs [14]

Hypergraphs are extremely useful generalizations of graphs but are notoriously difficult to work
with. An r-uniform hypergraph H on vertex set V is a collection of r-subsets of V—thus 2-
uniform hypergraphs coincide with graphs. A perfect matching of a hypergraph is a subset of
the members of H (“edges”) that partitions the vertex set. The linear programming relaxation
of this is a perfect fractional matching, that is a nonnegative weighting of the edges of H for
which the weights of the edges containing any v ∈ V sum to 1.

For any r > 2, determining if an r-uniform hypergraph has a perfect matching is an NP-
complete problem [20], making the question both important and computationally intractible
(unless P = NP). Motivated by this and by a conjecture of Alan Frieze and Gregory Sorkin
[18], we prove the following, which extends earlier results for graphs to hypergraphs. (The
natural k-out model is defined in the unabridged version.)

Theorem 4. For each r, there exists a constant C = C(r) such that if k > C, then the r-
uniform k-out hypergraph has a perfect fractional matching almost surely (i.e., with probability
tending to 1 as |V | → ∞).

Moreover, for r-uniform r-partite hypergraphs (again, defined in online version), a stronger
result precisely characterizes (almost surely) the optimal fractional covers. A key step in
our proof is establishing that a certain expansion-type property deterministically implies the
existence of perfect fractional matchings in r-uniform hypergraphs. The most natural (albeit
difficult) open problem for future research would be to extend these results to perfect matchings;
however, a more promising direction would be to determine the best possible value of C(r).
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Continuing and future work
I am interested in many different areas within discrete math. The above descriptions (and their
corresponding parts in the unabridged version) already mention quite a few intriguing research
questions that I am still thinking about. Here I discuss just two examples (among many) of
other problems that interest me.

(a) Relating the chromatic number of a graph to those of its subgraphs

Suppose G is a graph on n vertices with chromatic number χ(G) = χ, and let Gp be
the random subgraph of G where each edge is included independently with probability
p. Alon, Krivelevich, and Sudakov [4] proved E[χ(G1/2)] ≥ Cχ/ log(n), and Boris Bukh
suggested this could be improved to E[χ(G1/2)] ≥ Cχ/ log(χ). To get a feel for this con-
jecture, let us consider α(G1/2), for which we can show E[α(G1/2)] ≤ Cα(G) log(n/α(G))
using Túran’s theorem together with Boole’s inequality. This proves Bukh’s conjecture
when χ(G) = Θ(n/α(G)), and we thus need only consider the rare graphs for which this
is not the case. As intermediate steps, I propose the weaker conjectures

Conjecture 1: E[χ(G1/2)] ≥ Cχf/ log(χf ),

Conjecture 2: E[χ(Gp)] ≥ cpχ
p,

where χf is the fractional chromatic number of G and cp > 0 is a constant depending on
p. As before, Conjecture 1 holds when χf = Θ(n/α(G)), and the hope is that we might
be able to take advantage of linear programming duality. As for Conjecture 2, if 1/p is
an integer, it holds with cp = 1; however, taking G to be a large odd cycle already shows
we need cp ≤ 2/3p. In fact, even proving E[χ(G0.99)] ≥ Cχ0.5+ε would be interesting.

(b) Intersecting families of graphs

Let H be a fixed graph, and suppose F is a family of graphs on a common vertex set V
such that A ∩B contains a copy of H for all A,B ∈ F . How large can |F| be?

Normalizing, let µ(F) = |F|/2|V |(|V |−1)/2—thus µ(F) is the fraction of graphs on V that
are in F . Since F is intersecting, µ(F) ≤ 1/2, whereas we can acheive µ(F) = 2−|E(H)|

by taking F to be the collection of graphs containing some fixed copy of H.

An old conjecture of Simonovits and Sós says that if H is a triangle, then µ(F) ≤ 1/8,
so the above construction is best possible. The first progress was by Chung, Graham,
Frankl, and Shearer [9], who used an entropy argument to show that if H is not bipartite,
then µ(F) ≤ 1/4. Decades later Ellis, Filmus, and Friedgut [16] made a groundbreaking
improvement of µ(F) ≤ 1/8 for non-bipartite H (completely settling the triangle case).

For bipartite H, much less is known. If H is a disjoint union of stars, there are families
with µ(F) = 1/2−o(1), and if H is a 3-edge path, there are families with µ(F) > 2−|E(H)|.
And that’s all we know. In particular, we don’t know a single example of a bipartite H
for which µ(F) is bounded away from 1/2, though Alon [5] conjectures that if H is not
a disjoint union of stars, then this is always the case. This would follow from the special
case that H is a 3-edge path, but even proving it for, say, H = K100,100 would be very
interesting. Thus far, my approaches have suggested intriguing interactions between
random graphs, Fourier analysis, and information theory, which in turn have led to many
questions of independent interest. For example, we get an isoperimetric-type problem:

Question: If F ⊆ 2[n] is increasing (closed upwards) and balanced (|F| = 2n−1), with
small vertex boundary (|{A ⊆ [n] : ∃i s.t. A \ {i} /∈ F , A ∪ {i} ∈ F}| � 2n), must F
be noticeably correlated with some weighted majority function?
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