
MATH 553 Problem List 1 Spring 2022

Let k be an algebraically closed field.

1.1. Let G be a linear algebraic group.
(a) Show that CG(x) is a closed subgroup, for any x ∈ G.
(b) Show that Z(G) is a closed subgroup of G.
(c) If H is a subgroup of G, then so is its closure H̄ (the smallest

closed subset of the variety G which contains H). (Hint : Use con-
tinuity of the inversion and the left multiplication by x ∈ H to get
H̄−1 = H̄ and xH̄ = H̄.)

1.2. Show that CSp2n = Sp2n.Z(CSp2n).

1.3. Show that the set {(x, y) ∈ k2|xy = 0} is not irreducible but is
connected in the Zariski topology.

1.4. Prove that GO2n is not connected when char(k) 6= 2.

1.5. Prove that each of the groups Tn, Un, and Dn is connected.

1.6. Show that dimTn = n(n + 1)/2, dimUn = n(n − 1)/2, and
dimDn = n.
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2.1. Show that the set Gu of unipotent elements in any linear al-
gebraic group G is closed. (Hint : Embed G in some GLn and look at
characteristic polynomials of unipotent elements in GLn.)

2.2. Consider the projective general linear group PGLn := GLn/Z,
where Z = {cIn|c ∈ k×}, as abstract group. Let V be the n-dimensional
vector space over k on whichGLn acts naturally, and let V ∗ := Hom(V, k)
be the dual space. The action of GLn on V ⊗ V ∗ defines a group ho-
momorphism ϕ : GLn → GLn2 .

(a) Show that ϕ is a morphism of algebraic groups. Conclude that
its image is a closed subgroup of GLn2 .

(b) Show that ker(ϕ) = Z. Conclude that PGLn is a linear algebraic
group. (Hint : Using the formula for tensor product of two matrices,
first show that any g ∈ ker(ϕ) is diagonal.)

2.3. Show that the group of all automorphisms of the algebraic
group Ga is isomorphic to Gm. (Hint : Recall that k[G] = k[T ] in this
case. If ϕ is such an automorphism, find ϕ∗(1) and ϕ∗(T ).)

2.4. Work out the details of Example 3.13 given in class.

2.5. Suppose G is a nontrivial connected nilpotent linear algebraic
group. Show that dimZ(G) ≥ 1.
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3.1. (i) Show that the rank of Sp2n, resp. SO2n+1, is n.
(ii) Show that Sp2n ∩ T2n, resp. SO2n+1 ∩ T2n+1, is a Borel subgroup

of Sp2n, resp. of SO2n+1.

3.2. Let G be a connected linear algebraic group.
(i) Suppose that a Borel subgroup of G is nilpotent. Prove that

G = B and so G is nilpotent. (Hint : Consider a counterexample of
minimal dimension and use Exercise 2.5 and Proposition 6.8.)

(ii) Show that G is solvable if dimG ≤ 2.

3.3. (i) Let G be a connected linear algebraic group. Then G = Gs

if and only if G is a torus. (Hint : Apply Theorem 4.4 to a Borel
subgroup of G and then use Exercise 3.2.)

(ii) Give an example of a closed subgroup of GLn which consists of
only semisimple elements but which is not conjugate to any subgroup
of Dn. (Hint : Think about finite groups!)

3.4. (i) Let G be a linear algebraic group. Show that R(G) =
(∩B BorelB)◦.

(ii) Show that Sp2n is semisimple. (Hint : Follow Example 6.17 in
class.)

3.5. Let V = k3 be a 3-dimensional vector space with a fixed basis
(e1, e2, e3), and let P = StabSL(V )(〈e1, e2〉k). Consider

S = {g ∈ P |g(ei) = λg,iei for some λg,i ∈ k×, 1 ≤ i ≤ 3},
a torus of P . Find NP (S), NP (S)◦, CP (S), and CP (S)◦, and verify
that NP (S)/CP (S) is finite.
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4.1. Let G be a linear algebraic group and i : g 7→ g−1 be the
inversion morphism. Show that the differential of i is the map X 7→
−X for X ∈ Lie(G). (Hint : First compute the differentials of the
morphisms Id : g 7→ g and g 7→ 1. Then apply Proposition 7.7 and
Example 7.8 to the morphism µ ◦ (i, Id) : G→ G×G→ G.)

4.2. Show that the Lie algebra of Tn, respectively of Un, Dn, can be
identified with the Lie subalgebra of all upper triangular, strictly upper
triangular, diagonal n×n-matrices, respectively. (Hint : Use Theorem
7.9.)

4.3. Let k be a field of characteristic p > 0, G = SL3, and let

ϕ : Ga → G, t→

1 t tp

0 1 0
0 0 1

 .
(i) Show that ϕ defines an isomorphism of algebraic groups between

Ga and H = Im(ϕ).
(ii) Determine Lie(H), as a subalgebra of gl3.
(iii) Show that CG(H) is not equal to

CG(Lie(H)) := {g ∈ G | Ad(g)X = X, ∀X ∈ Lie(H)}.
(iv) Suppose p = 3. Show that Lie(CG(H)) is not equal to

CLie(G)(H) := {X ∈ Lie(G) | Ad(h)X = X, ∀h ∈ H}.

4.4. (i) Let G be a linear algebraic group. Show that Z(G) ≤
Ker(Ad).

(ii) Determine Ker(Ad) for each of the following groups: GLn, Un,
Tn.

(iii) Let k be a field of characteristic p > 0, and let

G =


a 0 0

0 ap b
0 0 1

 | a ∈ k×, b ∈ k
 .

Show that Z(G) < Ker(Ad) < G (proper containments!).

4.5. Show that the Lie algebras of PGLn and SLn are isomorphic if
and only if char(k) does not divide n. (Hint : For the non-isomorphism,
think about the center Z(L) := {x ∈ L | [x, y] = 0, ∀y ∈ L} of the Lie
algebras L in question.)
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5.1. Let G = Sp2n. It is known that

Lie(G) = {X ∈ gl2n | XTJ2n = −J2nX},

where J2n is as in the definition of symplectic groups. Let T = D2n∩G
be a maximal torus of G (see Exercise 3.1).

(i) Assume n = 2. Find the roots and root subspaces of Lie(G). For
each root α, exhibit a one-dimensional closed subgroup Uα ≤ G whose
Lie algebra is the corresponding root subspace.

(ii) Generalize to the case of arbitrary n: show that the root system
of Sp2n is of type Cn. Conclude that dimSp2n = 2n2 + n.

5.2. Show that

[GLn, GLn] = SLn, [CSp2n, CSp2n] = Sp2n, [CO◦n, CO
◦
n] = SOn.

(Hint : Compare the root systems of the two groups in each case and
apply Proposition 6.20(c) and List of Isogeny types for simple algebraic
groups).

5.3. (A general construction of abstract root systems.) Let E = Rn

be a Euclidean space with scalar product (·, ·). Let (e1, . . . , en) and
Λ = 〈e1, . . . , en〉Z, the free Z-module generated by e1, . . . , en. Suppose
that (u, v) ∈ Z for all u, v ∈ Λ. Let

Λ1 := {v ∈ Λ | (v, v) = 2} , Λ2 := {v ∈ Λ | (v, v) ∈ {1, 2}} .

Show that, for each i = 1, 2, if Λi is non-empty, then it is an abstract
root system in Ei := Λi ⊗Z R.

5.4. Let E = R9 = 〈e1, . . . , e9〉R be a Euclidean space with standard
scalar product: (ei, ej) = δi,j. Consider the free Z-submodule

Λ :=

{
9∑
i=1

xiei ∈ E |
9∑
i=1

xi = 0, xi + xj + xk ∈ Z, 1 ≤ i, j, k ≤ 9

}
.

In the notation of Exercise 5.4, show that Λ1 is an abstract root system
of type E8. (This construction actually arises from a so-called orthog-
onal decomposition of the complex simple Lie algebra of type A2.)

5.5. Let V = F3
2 and let E = R8 = 〈ev | v ∈ V 〉R be a Euclidean

space with scalar product: (eu, ev) = δu,v/2. A subset X of V is called
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an affine plane in V , if |X| = 4 and the four vectors in X add up to 0.
Let A be the set of all affine planes in V . Show that

Φ := {±2ev | v ∈ V } ∪
{∑
x∈X

εxex | εx = ±1, X ∈ A
}

is an abstract root system in E. What is the type of Φ, and why?


