Let k be an algebraically closed field.

1.1. Let G be a linear algebraic group.

(a) Show that $C_G(x)$ is a closed subgroup, for any $x \in G$.

(b) Show that Z(G) is a closed subgroup of G.

(c) If H is a subgroup of G, then so is its *closure* H (the smallest closed subset of the variety G which contains H). (**Hint**: Use continuity of the inversion and the left multiplication by $x \in H$ to get $\bar{H}^{-1} = \bar{H}$ and $x\bar{H} = \bar{H}$.)

1.2. Show that $CSp_{2n} = Sp_{2n} Z(CSp_{2n})$.

1.3. Show that the set $\{(x, y) \in k^2 | xy = 0\}$ is not irreducible but is connected in the Zariski topology.

1.4. Prove that GO_{2n} is not connected when $char(k) \neq 2$.

1.5. Prove that each of the groups T_n , U_n , and D_n is connected.

1.6. Show that dim $T_n = n(n+1)/2$, dim $U_n = n(n-1)/2$, and dim $D_n = n$.

2.1. Show that the set G_u of unipotent elements in any linear algebraic group G is closed. (**Hint** : Embed G in some GL_n and look at

characteristic polynomials of unipotent elements in GL_n .)

2.2. Consider the projective general linear group $PGL_n := GL_n/Z$, where $Z = \{cI_n | c \in k^{\times}\}$, as abstract group. Let V be the n-dimensional vector space over k on which GL_n acts naturally, and let $V^* := Hom(V, k)$ be the dual space. The action of GL_n on $V \otimes V^*$ defines a group homomorphism $\varphi : GL_n \to GL_{n^2}$.

(a) Show that φ is a morphism of algebraic groups. Conclude that its image is a closed subgroup of GL_{n^2} .

(b) Show that $ker(\varphi) = Z$. Conclude that PGL_n is a linear algebraic group. (**Hint**: Using the formula for tensor product of two matrices, first show that any $g \in ker(\varphi)$ is diagonal.)

2.3. Show that the group of all automorphisms of the **algebraic** group \mathbf{G}_a is isomorphic to \mathbf{G}_m . (**Hint**: Recall that k[G] = k[T] in this case. If φ is such an automorphism, find $\varphi^*(1)$ and $\varphi^*(T)$.)

2.4. Work out the details of Example 3.13 given in class.

2.5. Suppose G is a nontrivial connected nilpotent linear algebraic group. Show that dim $Z(G) \ge 1$.

MATH 553

3.1. (i) Show that the rank of Sp_{2n} , resp. SO_{2n+1} , is n.

(ii) Show that $Sp_{2n} \cap T_{2n}$, resp. $SO_{2n+1} \cap T_{2n+1}$, is a Borel subgroup of Sp_{2n} , resp. of SO_{2n+1} .

3.2. Let G be a connected linear algebraic group.

(i) Suppose that a Borel subgroup of G is nilpotent. Prove that G = B and so G is nilpotent. (Hint : Consider a counterexample of minimal dimension and use Exercise 2.5 and Proposition 6.8.)

(ii) Show that G is solvable if dim $G \leq 2$.

3.3. (i) Let G be a connected linear algebraic group. Then $G = G_s$ if and only if G is a torus. (**Hint**: Apply Theorem 4.4 to a Borel subgroup of G and then use Exercise 3.2.)

(ii) Give an example of a closed subgroup of GL_n which consists of only semisimple elements but which is not conjugate to any subgroup of D_n . (**Hint** : Think about finite groups!)

3.4. (i) Let G be a linear algebraic group. Show that $R(G) = (\bigcap_{B \text{ Borel}} B)^{\circ}$.

(ii) Show that Sp_{2n} is semisimple. (**Hint**: Follow Example 6.17 in class.)

3.5. Let $V = k^3$ be a 3-dimensional vector space with a fixed basis (e_1, e_2, e_3) , and let $P = Stab_{SL(V)}(\langle e_1, e_2 \rangle_k)$. Consider

 $S = \{g \in P | g(e_i) = \lambda_{g,i} e_i \text{ for some } \lambda_{g,i} \in k^{\times}, 1 \le i \le 3\},\$

a torus of *P*. Find $N_P(S)$, $N_P(S)^\circ$, $C_P(S)$, and $C_P(S)^\circ$, and verify that $N_P(S)/C_P(S)$ is finite.

MATH 553

4.1. Let G be a linear algebraic group and $i : g \mapsto g^{-1}$ be the inversion morphism. Show that the differential of i is the map $X \mapsto -X$ for $X \in Lie(G)$. (**Hint**: First compute the differentials of the morphisms Id : $g \mapsto g$ and $g \mapsto 1$. Then apply Proposition 7.7 and Example 7.8 to the morphism $\mu \circ (i, \text{Id}) : G \to G \times G \to G$.)

4.2. Show that the Lie algebra of T_n , respectively of U_n , D_n , can be identified with the Lie subalgebra of all upper triangular, strictly upper triangular, diagonal $n \times n$ -matrices, respectively. (**Hint** : Use Theorem 7.9.)

4.3. Let k be a field of characteristic p > 0, $G = SL_3$, and let

$$\varphi : \mathbf{G}_a \to G, \ t \to \begin{pmatrix} 1 & t & t^p \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(i) Show that φ defines an isomorphism of algebraic groups between \mathbf{G}_a and $H = Im(\varphi)$.

(ii) Determine Lie(H), as a subalgebra of gl_3 .

(iii) Show that $C_G(H)$ is **not** equal to

$$C_G(Lie(H)) := \{g \in G \mid Ad(g)X = X, \forall X \in Lie(H)\}.$$

(iv) Suppose p = 3. Show that $Lie(C_G(H))$ is **not** equal to

$$C_{Lie(G)}(H) := \{ X \in Lie(G) \mid Ad(h)X = X, \ \forall h \in H \}$$

4.4. (i) Let G be a linear algebraic group. Show that $Z(G) \leq Ker(Ad)$.

(ii) Determine Ker(Ad) for each of the following groups: GL_n , U_n , T_n .

(iii) Let k be a field of characteristic p > 0, and let

$$G = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & a^p & b \\ 0 & 0 & 1 \end{pmatrix} \mid a \in k^{\times}, b \in k \right\}.$$

Show that Z(G) < Ker(Ad) < G (proper containments!).

4.5. Show that the Lie algebras of PGL_n and SL_n are isomorphic if and only if char(k) does not divide n. (**Hint** : For the non-isomorphism, think about the center $Z(\mathcal{L}) := \{x \in \mathcal{L} \mid [x, y] = 0, \forall y \in \mathcal{L}\}$ of the Lie algebras \mathcal{L} in question.)

5.1. Let $G = Sp_{2n}$. It is known that

$$Lie(G) = \{ X \in gl_{2n} \mid X^T J_{2n} = -J_{2n}X \},\$$

where J_{2n} is as in the definition of symplectic groups. Let $T = D_{2n} \cap G$ be a maximal torus of G (see Exercise 3.1).

(i) Assume n = 2. Find the roots and root subspaces of Lie(G). For each root α , exhibit a one-dimensional closed subgroup $U_{\alpha} \leq G$ whose Lie algebra is the corresponding root subspace.

(ii) Generalize to the case of arbitrary n: show that the root system of Sp_{2n} is of type C_n . Conclude that dim $Sp_{2n} = 2n^2 + n$.

5.2. Show that

$$[GL_n, GL_n] = SL_n, \ [CSp_{2n}, CSp_{2n}] = Sp_{2n}, \ [CO_n^\circ, CO_n^\circ] = SO_n.$$

(**Hint** : Compare the root systems of the two groups in each case and apply Proposition 6.20(c) and List of Isogeny types for simple algebraic groups).

5.3. (A general construction of abstract root systems.) Let $E = \mathbb{R}^n$ be a Euclidean space with scalar product (\cdot, \cdot) . Let (e_1, \ldots, e_n) and $\Lambda = \langle e_1, \ldots, e_n \rangle_{\mathbb{Z}}$, the free \mathbb{Z} -module generated by e_1, \ldots, e_n . Suppose that $(u, v) \in \mathbb{Z}$ for all $u, v \in \Lambda$. Let

$$\Lambda_1 := \{ v \in \Lambda \mid (v, v) = 2 \}, \ \Lambda_2 := \{ v \in \Lambda \mid (v, v) \in \{1, 2\} \}.$$

Show that, for each i = 1, 2, if Λ_i is non-empty, then it is an abstract root system in $E_i := \Lambda_i \otimes_{\mathbb{Z}} \mathbb{R}$.

5.4. Let $E = \mathbb{R}^9 = \langle e_1, \ldots, e_9 \rangle_{\mathbb{R}}$ be a Euclidean space with standard scalar product: $(e_i, e_j) = \delta_{i,j}$. Consider the free Z-submodule

$$\Lambda := \left\{ \sum_{i=1}^{9} x_i e_i \in E \mid \sum_{i=1}^{9} x_i = 0, \ x_i + x_j + x_k \in \mathbb{Z}, \ 1 \le i, j, k \le 9 \right\}.$$

In the notation of Exercise 5.4, show that Λ_1 is an abstract root system of type E_8 . (This construction actually arises from a so-called *orthog*onal decomposition of the complex simple Lie algebra of type A_2 .)

5.5. Let $V = \mathbb{F}_2^3$ and let $E = \mathbb{R}^8 = \langle e_v \mid v \in V \rangle_{\mathbb{R}}$ be a Euclidean space with scalar product: $(e_u, e_v) = \delta_{u,v}/2$. A subset X of V is called

an affine plane in V, if |X| = 4 and the four vectors in X add up to 0. Let \mathcal{A} be the set of all affine planes in V. Show that

$$\Phi := \left\{ \pm 2e_v \mid v \in V \right\} \cup \left\{ \sum_{x \in X} \epsilon_x e_x \mid \epsilon_x = \pm 1, \ X \in \mathcal{A} \right\}$$

is an abstract root system in E. What is the type of Φ , and why?