640:300 WORKSHOP 1 SETS, UNIONS AND INTERSECTIONS

Recall that an open interval (a, b) on the real line \mathbb{R} is defined as

$$(\mathfrak{a},\mathfrak{b}) = \{ \mathfrak{x} \in \mathbb{R} \mid \mathfrak{a} < \mathfrak{x} < \mathfrak{b} \}.$$

For a fixed $n \in \mathbb{N} = \{1, 2, 3, 4, ...\}$, we define the following open interval:

$$S_n = \left(\frac{n-1}{n}, 1\right).$$

Letting n range over \mathbb{N} , we obtain an infinite family of open intervals $\{S_n\}_{n \in \mathbb{N}}$.

(i) Prove that for all $n \in \mathbb{N}$, $S_n \supset S_{n+1}$.

(ii) Prove that $\bigcup_{n\in\mathbb{N}}S_n=(0,1),$ where

$$\bigcup_{n\in\mathbb{N}}S_n=S_1\cup S_2\cup S_3\cup\ldots$$

(iii) What is $|\bigcap_{n \in \mathbb{N}} S_n|$, where

$$\bigcap_{n\in\mathbb{N}}S_n=S_1\cap S_2\cap S_3\cap\ldots?$$

Explain your answer.