Introduction to Mathematical Reasoning Homework 7
 Due Tuesday December 10, 2019

(1) Prove that the function $h: \mathbb{Z} \longrightarrow \mathbb{O}$ defined by $h(x)=2 x-3$ is bijective.
(2) Prove that the function $f:[1, \infty) \rightarrow[2, \infty)$ defined by $f(x)=x+1 / x$ is bijective.
(3) Define $\mathrm{f}: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ by $(\mathrm{m}, \mathrm{n}) \mapsto 2^{m-1} 3^{n-1}$. Prove that f is injective, but not surjective. Does this fact imply that $\mathbb{N} \times \mathbb{N}$ is not equivalent to \mathbb{N}, and why?
(4) Let $\mathbb{Z}[\sqrt{2}]=\{x \in \mathbb{R} \mid x=a+b \sqrt{2}, a, b \in \mathbb{Z}\}$. Is $\mathbb{Z}[\sqrt{2}]$ is countable? Why? (Hint: You may need the irrationality of $\sqrt{2}$ and some operations with countable sets.)
(5) Let \mathbb{D} denote the set of integers $n>1$ that are powers of 2 or of 3 . Construct a bijection $\mathbb{N} \rightarrow \mathbb{D}$ and hence conclude that \mathbb{D} is equivalent to \mathbb{N}.
(6) Let $X=\{3 n+2 \mid n \in \mathbb{N}\}$ and Y be the set of integers which are perfect squares (like 1, 4, 9, etc.) Find a bijective map $f: X \longrightarrow Y$.
(7) Determine all pairs of real numbers m, b such that the function $f(x)=m x+b$ yields a bijection between \mathbb{R} and \mathbb{R}.
(8) (a) For any $n \in \mathbb{Z}_{\geqslant 0}$, construct a bijection between \mathbb{N} and

$$
\{0,-1,-2, \ldots,-\mathfrak{n}+1\} \cup \mathbb{N}=\{-n+1,-n+2, \ldots, 0,1,2,3, \ldots\}
$$

(b) Using (a), but without using the Theorem proved in class about unions of countable sets, prove that if A is a finite set and B is an infinite countable set disjoint from A, then $A \cup B$ is countable.
(9) Prove that the set \mathbb{X} of all finite subsets of \mathbb{N} is countable. (Hint: You can either use operations with countable sets, or perhaps use Prime Factorization Theorem and the set \mathbb{P} to construct an injection between \mathbb{X} and \mathbb{N}.)
(10) Let S be the set of all open intervals in $(-\infty, \infty)$ of the form

$$
S=\left\{\left.\left(0, \frac{1}{2^{n}}\right) \right\rvert\, n \in \mathbb{N}\right\}
$$

Prove that S is countable.
(11) Prove that $\mathbb{R} \backslash \mathbb{N}$ is uncountable. (Hint: Use the fact that \mathbb{R} is uncountable.)

