Math 300, Homework 6 Due Wednesday, November 27, 2019

(1) Let \mathcal{X} denote the set of all possible finite subsets of \mathbb{N}. Define a relation \sim_{1} on \mathcal{X} by $S_{1} \sim_{1} S_{2}$ if S_{1} and S_{2} have the same cardinality, and a relation \sim_{2} by $S_{1} \sim_{2} S_{2}$ if $S_{1} \cap S_{2} \neq \emptyset$. Which ones among \sim_{1} and \sim_{2} are an equivalence relation? Prove your answer.
(2) Let S be the set of all quadratic polynomials with real roots. That is,

$$
S=\left\{f(x)=a x^{2}+b x+c \mid a, b, c \in \mathbb{R}, b^{2}-4 a c \geq 0\right\}
$$

Define a relation \sim on S by
$f \sim g \Longleftrightarrow$ the two equations $f(x)=0, g(x)=0$ have the same sets of solutions.
Show that \sim is an equivalence relation. Name three elements in the equivalence class of $x^{2}-3 x+2$.
(3) Define a relation on \mathbb{R} given by $x \sim y$ if and only if $x-y \in \mathbb{Q}$. Show that \sim is an equivalence relation. Find the equivalence classes of $0,26 / 11$, and $\sqrt{2}$ under this equivalence relation. Name three elements in each of these equivalence classes.
(4) Define a relation on $\mathbb{N}_{>1}$ given by $x \sim y$ if and only if the prime factorizations of x and y have the same number of 2's. (For instance, $8 \sim 24$ but $4 \nsim 24$.) Show that \sim is an equivalence relation and find the equivalence classes of 2 and 5 under this equivalence relation. Name three elements in each of these equivalence classes.
(5) Let $x, y \in \mathbb{R}$ and define a relation \sim on \mathbb{R} by $x \sim y$ if $|x|=|y|$. Prove that \sim is an equivalence relation. Find the equivalence classes of 0,5 and $\sqrt{2}$ under the relation \sim.
(6) Find the remainder when (a) $238+494-44$ is divided by 9 ; (b) $182 \cdot 144$ is divided by 13 ; (c) 11^{27} is divided by 3 .
(7) Prove by induction on n that if $x \equiv y(\bmod m)$ then $x^{n} \equiv y^{n}(\bmod m)$ for all $n \in \mathbb{N}$.
(8) Use congruences modulo 7 and exhaustion of cases to prove that, for any integer k, $5\left(k^{6}-k^{3}\right) \equiv 0$ or 3 modulo 7 .

