Math 300, Homework 6 Due Wednesday, November 27, 2019

(1) Let \mathcal{X} denote the set of all possible finite subsets of \mathbb{N} . Define a relation \sim_1 on \mathcal{X} by $S_1 \sim_1 S_2$ if S_1 and S_2 have the same cardinality, and a relation \sim_2 by $S_1 \sim_2 S_2$ if $S_1 \cap S_2 \neq \emptyset$. Which ones among \sim_1 and \sim_2 are an equivalence relation? Prove your answer.

(2) Let S be the set of all quadratic polynomials with real roots. That is,

 $S = \{ f(x) = ax^2 + bx + c \mid a, b, c \in \mathbb{R}, b^2 - 4ac \ge 0 \}.$

Define a relation \sim on S by

 $f \sim g \iff$ the two equations f(x) = 0, g(x) = 0 have the same sets of solutions.

Show that \sim is an equivalence relation. Name three elements in the equivalence class of $x^2 - 3x + 2$.

(3) Define a relation on \mathbb{R} given by $x \sim y$ if and only if $x - y \in \mathbb{Q}$. Show that \sim is an equivalence relation. Find the equivalence classes of 0, 26/11, and $\sqrt{2}$ under this equivalence relation. Name three elements in each of these equivalence classes.

(4) Define a relation on $\mathbb{N}_{>1}$ given by $x \sim y$ if and only if the prime factorizations of x and y have the same number of 2's. (For instance, $8 \sim 24$ but $4 \not\sim 24$.) Show that \sim is an equivalence relation and find the equivalence classes of 2 and 5 under this equivalence relation. Name three elements in each of these equivalence classes.

(5) Let $x, y \in \mathbb{R}$ and define a relation \sim on \mathbb{R} by $x \sim y$ if |x| = |y|. Prove that \sim is an equivalence relation. Find the equivalence classes of 0, 5 and $\sqrt{2}$ under the relation \sim .

(6) Find the remainder when (a) 238 + 494 - 44 is divided by 9; (b) $182 \cdot 144$ is divided by 13; (c) 11^{27} is divided by 3.

(7) Prove by induction on n that if $x \equiv y \pmod{m}$ then $x^n \equiv y^n \pmod{m}$ for all $n \in \mathbb{N}$.

(8) Use congruences modulo 7 and exhaustion of cases to prove that, for any integer k, $5(k^6 - k^3) \equiv 0$ or 3 modulo 7.