640:300, Fall 2019

Homework 5

Due Tuesday, Nov. 12, 2019
(1) Prove using the method of smallest counterexamples that for all $n \in \mathbb{N}_{>1}$ we have

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(n-1) \cdot n}=\frac{(n-1)}{n} .
$$

(2) Let $a_{1}=2, a_{2}=4$, and $a_{n+2}=5 \cdot a_{n+1}-6 \cdot a_{n}$. Prove using the method of smallest counterexamples that for all $n \in \mathbb{N}$, $a_{n}=2^{n}$.
(3) Prove using the method of smallest counterexamples that for all $n \in \mathbb{N}$

$$
3+11+19+\cdots+(8 n-5)=4 n^{2}-n
$$

(4) Prove using the method of smallest counterexamples that for all $n \in \mathbb{N}, 5^{2 n-1}+1$ is divisible by 6 .
(5) Prove using the method of smallest counterexamples that for all $n \in \mathbb{N}$,

$$
\sum_{i=1}^{n} 2^{i}=2^{n+1}-2
$$

(6) Let \mathbb{Z}_{-}denote the set of all negative integers. Prove using the Well-Ordering Principle that any non-empty subset of \mathbb{Z}_{-}has a largest element.
(7) Prove by the method of smallest counterexamples that every natural number greater or equal to 11 can be written in the form $2 s+5 t$ for some natural numbers s, t.

