640:300, Fall 2019

Due Tuesday, Oct. 29, 2019

Homework 4
(1) For $r \in \mathbb{R} \backslash\{1\}$ and $n \in \mathbb{N}$ use induction to show that:

$$
1+r+r^{2}+\cdots+r^{n-1}=\frac{1-r^{n}}{1-r}
$$

(2) Prove by induction that for each $n \in \mathbb{N}, n^{2}<3^{n}$.
(3) Prove by induction that for each $n \in \mathbb{N}, n^{3}+2 n$ is divisible by 3 .
(4) Prove by induction that for each $n \in \mathbb{N}$, and for each $x \in \mathbb{R}_{>2}$,

$$
x^{n}+x<x^{n} \cdot x .
$$

(5) Prove by induction that for each $n \in \mathbb{N}$, and for each $x \in \mathbb{R}_{>2}$,

$$
n x+1<x^{n}+2 .
$$

(Hint: You may need to use Q4 or an equivalent statement in your proof of the inductive step.)
(6) Prove by induction that for each $n \geq 1,5^{2 n-1}+1$ is divisible by 6 .
(7) Prove the rule of exponents, $(a b)^{n}=a^{n} b^{n}$, for every natural number n, by mathematical induction.
(8) Let $n \geq 1$ be any odd integer. Prove by induction that $n^{2}-1$ is divisible by 4 . (Hint: You cannot prove this by induction directly on n. Rewrite $n^{2}-1$ in terms of a variable on which you can do induction.)

