Math 300, Fall 2019

Homework 3

Due Tuesday Oct. 15, 2019
(1) Find all integer solutions (x, y) to the equation $x y-3 x+2 y=12$. (Hint: Rearrange the equation to obtain a factorization.)
(2) Let n be a positive integer that has 6 and 8 as factors. What other factors must n have?
(3) Let $n \in \mathbb{N}$ and let p be prime. Prove that p cannot divide both n and $n+1$.
(4) Let n be a natural number with prime decomposition $n=p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{k}^{s_{k}}$. Prove that if $n=m^{2}$ for some natural number m then $s_{1}, s_{2}, \ldots, s_{k}$ are all even. (Hint: You can use the Prime Factorization theorem for natural numbers.)
(5) Let $n \in \mathbb{N}_{>1}$. Prove that if n divides $(n-1)$! then n has a proper divisor $d>1$.
(6) Prove that if n is composite, $n=k \ell$, with $1<k<n$ and $1<\ell<n$, then k and ℓ both divide ($n-1$)!.
(7) Prove that every prime number $p \in \mathbb{P}_{>3}$ is either of the form of $4 n+1$ or of the form of $4 n+3$ for some $n \in \mathbb{N}$.
(8) Prove that if $p \in \mathbb{P}_{\geq 5}$ then $p^{2}+2$ is composite.
(9) Let $a, n \geq 2$ be integers. Prove that if $a^{n}-1$ is prime, then $a=2$ and n is prime. (Hint: use the identity $x^{m}-1=(x-1)\left(x^{m-1}+x^{m-2}+\cdots+x+1\right)$ for any integer $m \geq 2$. This is another chance to write up the complete solution after the discussion in Workshop 4.)

